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The notion of regularity for semigroups is studied, and it is shown that an unambiguous
semigroup (i.e., whose ¥ and .# orders are respectively unions of disjoint trees) can be embedded
in a regular semigroup with the same subgroups and the same ideal structure (except that a zero
is added 10 the regular semigroup).

In a previous paper [1] it was shown that any semigroup is the homomorphic image of an unam-
biguous semigroup with the same groups and a similar ideal structure.

Together these two papers thus prove that an arbitrary semigroup divides a regular semigroup
with a similar structure.

The resulting regular semigroup is finite (resp. torsion, or bounded torsion) if tae given
semigroup has that property.
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1. Introduction

Definition. An element s of a semigroup S is regular iff there exists xe S such that
= §XS,

The semigroup S is said to be regular iff every element of S is regular. For
undefined terms, see [5] and {7].

1.1. Meaning of regularity

The following intuitive interpretation of regularity of an element s was helpful in
the coustructions that will be given later.

Here we think of the semigroup S as a set of transformations acting on a set of
states Q.

The transformation s is regular i
time, and reproduces the same re
property as follows:

s . X . s = s {1.1)
" N A N N o & ~
the transforma- there exists some- when s is  we obtain the same
tion s is applied thing that can be done /applied effect as when s was
(to states) (in $) such that / again applied originally

In short we say that s is regular iff s is ‘‘repeatable with the same results.’’

We cghall prove a theorem, which reduces arbitrary semiorouns to rpaulnr ones,

%W Jiiisix Sl wisd v lll\vll IvsMUuvwd iy LA NTAgrS i

Semlgroup expansions (treated in [1] and [2]) play a fundamental role; however
this paper depends on these papers or.ly through the existence of expansions having
certain propert:es, and the reasoning refers only to those properties ( — not to how
they were obtained).

In particular we shall prove:

(a) For every semigroup S there ex sts a regular semigroup Sg such tiat S< Si (S
divides Sg), annd Sy has the same subgroups as S.

(b) A more precise statement is: For every semigroup S there ¢xists a semigroup
S, a surmorphism ¢:5—S, and a semigroup Sg such that: (i) S=Sg; (i) Sk is
regular; (iii) ¢ is injective when restricted to subgroups of S; every non-trivial
subgroup of §; is D-equivalent to an isomorphic subgroup of S.

Remarks. (1) Statement (a) follows, for finite semigroups, from the Allen-Rhodes
synthesii theorem (see [9] and [3]) — as was observed by John Rhodes.
(2) Sec Section 2.5 for the complete statement of the theorem.
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(3) The whole theorem grew out of an attempt to find a simpler proof of the
Allen-Rhodes synthesis theorem -- which combines the Krohn-Rhodes and the Rees
theorems (for finite semigroups). A relatively simple proof existed for regular finite
semigroups (due to Stuart Margolis, J. Rhodes and D. Allen, Jr.) — and together
with the ‘S < Sg’’-theorem we obtain a new proof of the synthesis theorem. Also,

the ‘S < Sg”’-theorem extends the idea of a synthesis between the theory of regular
semigroups and the global theory of arbitrary semigroups.

1.2. Examples of elementary embeddings of arbitrary semigroups in regular ones

1.2.1. Right regular representation

Let S be a semigroup and S! the monoid generated by S (i.e., S'=Sif Sis a
monoid; otherwise, S‘=SU{1} where 1 is a new element multiplied as 1-1=1,
Ix=x1=x, VxeS). Consider the semigroup F(S'—S'") of all functions from S'
into S'!, under composition.

F(S'—8") is regular and S<F(S'—S') (using the embedding sc f, where
(WVxeS'): (0f,=xs — see [5], [7] or [8, part II] for a more complete description).

The drawback of this embedding is that it does not preserve many properties of
S: in fact F(S'—S") depends on S only by the cardinality of S'.

1.2.2. Relations and their inverses

If Q is a set, define B(Q) to be the semigroup of all binary relations on Q, under
relational composition. Then F(Q — Q) < B(Q); hence by the right regular represen-
tation there exists Q such that S< B(Q). For an element s € S< B(Q), denote the in-
verse relation by s~! € B(Q).

Then Ss(SU{s'l eB(Q)‘seS})B(Q, (the subsemigroup of B(Q), generated by
SU{s !|seS}). One would guess that this semigroup is regular, since s=ss's
and s~! =5 'ss™!; moreover for relations (r;r;) ' =r;tr; P and (r~')"'=r. However
r=rr'r does not hold for arbitrary relations (but it does hold for functions and
inverses of functions). Example: if Q= {a, b} and r is defined by

ge—r—eg

be——eh

then (@)r=a, but (@)rr ‘r=({a,b})r={a,b}. Neither B(Q) nor (SU{s 'iseS}H
are regular in general (see Section 1.3, Fact 1.5).

But we shall see later in Section 2.4 that if S is unambiguous, then (SU
{s~'|s€S}) has a homomorphic image which is regulur, contains S, and whose
subgroups divide the groups of S (at least in the finite case).

1.2.3. The following construction embeds an arbitrary semigroup S into a regular
semigroup Reg(S). However many properties of S are lost when replacing it by
Reg(S). Some of the lost properties (like inverse, orthodox, etc.) can be recovered
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if suitable relations (in terms of the generators) are imposed on Reg(S) (and then
we obtain the constructions Inv(S), Orth(S), etc.).

The semigroups Reg(S), Inv(S), Orth(S),... will not be used as such in the rest
of the paper; some of their properties are stated as conjectures, and further research
is needed.

1.2.4. The semigroup Reg(S)

Let S be a semigroup and let $= {§|s€ S} be a set disjoint from S and in one-to-
one correspondence with S. Then Reg(S) is the semigroup presented by the set of
generators SU S and the relations:

(1) 5;5,=s5; if §1- 55 =s5; (where - denotes multiplication in S).

2) 513, =58, 5;.

(3) If wis 2 word over SUS, then w=www, where w is defined as follows: if
W=(X],..., X, E(SUS)" then w=(%,,..., % ); here xe SUS is defined by:

{i if x=5€8,

Remark. By the relations (2),
the semigroup S.

Relations (1) and (2) together define the free prcduct of S and its reverse S. So
Reg(S) is the free product of S and §, with the relations (3) imposed on it.

nam ko rrancidarad tn ha tha savnree oot iormiim 8
Cadll UC CUIBIUCICU LU U LIIC ICVEIDC SCLHIEIVUp Ul

Remark. Reg(S) is a generalization of the so-called ‘‘free *-regular semigroup over
a set of generators’’.

Properties of Reg(S). (i) Reg(S) is regular (by the relations (3)).
(ii) Reg(-) is a functor: If ¢ : S— T is a morphism, then there exists a morphism

Reg(p) : Reg(S)—Reg(T) (defined in the obvious way) etc. If ¢ is surjective, then

Reg((p) is surjective.
Conjecture. S<Reg(S).

This is harder to prove than it seems at first sight, but probably not too hard. E.g.
the following reasoning outlines a proof that: if s#,¢ in S, then s#¢ in Reg(S).

Indeed, if s#,¢, then r¢ {xeS|x=,;s}° (Rees quotient), or conversely s¢
{xeS ﬂx___ t}°. Consider now the Rees quotient morphism ¢:S—»{x=;s}°, and
its functorial image Reg(g):Reg(S)-»Reg{{x|x=;5}°). We claim that under
Reg(p):5—s (#0) and t~0. That t~0 is clear; to show that in keg({x|x=,s}°},
s+#0, observe that when the relations (1), (2) and (3) are applied, s is factored; but
factors of s are all =, s hence never 0 in {x|x=,s}°.

Conjeciure. Reg(S) may be infinite if S is finite. In fact, if a,be S are not com-
parable in the <,-order, then (2b)"# (@b)™ if n#m.
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We shall not use Reg(S) itself in the main part of this paper, but a construction
(8);¢g such that: (S),.g is 2 homomorphic image of Reg(S) with a zero added; and
S=(8)eg if S is ‘unambiguous’ (defined later).

1.2.5. The semigroup Inv(S)
Inv(S) is defined to be Reg(S) with the following relations added:

4) wwww=wwww, for any word w over SUS.

1.1. Fact. Inv(S) is an inverse semigroup.

Proof. Regularity follows from the relations (3). We must show that all idempotents
of Inv(S) commute.

Let e be any idempotent of Inv(S); then e=e¢, for

e =eée by (3)

—ele  since e*=¢

= @eeé by (4)
= e since e =e?
=@ by (3).

Also, the product of any two idempotents e, f of Inv(S) is an idempotent. Indeed
let e=e?, f=f?eInv(S); then

ef=ef-ef-ef by (3)
= effeef by (2)

= effeef since by the above: e=¢, f=f
=ef-ef since e=e?, f=f"
= (ef)>.

Now finally,

ef=ef  since we proved that ef is an idempotent
=fe by (2)

= fe since e=é, f=1. a
Conjecture. If in S the idempotents commute, then §$=Inv(S).

Conjecture. Inv(S) can be infinite if S is finite.
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1.2.6. The semigroup Orth(S)
Orth(S) is defined to be Reg(S) with the following relations added:

(4°) (W, W0, W, Wy W Wy Wy)? = Wy W W, W, W, W, W, w,  for all words wy, w, over SUS.

1.2. Fact. Orth(S) is an orthodox semigroup.

Proof. Clearly Orth(S) is regular (by (3)). We must show that the product of any
two idempotents e, f of orth(S) is an idempotent:

ef = eeefff by (3)
=e22effff  since é’=e, fi=F
=(e2effffY’ by (4'), letting w;=¢ and w,=/1.
=(ef ). 0O

Remark. Axiom (4') is a consequence of Fact 1.2 since w;w; and w;w,; are idem-
potents.

Conjecture. If the idempotents of S form a subsemigroup, then S<Orth(S).
Conjecture. Orth(S) can be infinite if S is finite.

Remark. Other similar constructions can be devised, inspired from various
semigroup properties. E.g.:

groups G(S)=(SUS)*/(s5=5s=1),
bicyclic BC(S)=(SUS)*/(5s=1).

We shall not use these constructions in their general form in this paper and they
need further research; they are generalizations of certain previously known con-
structions (that are ‘free’ in various ways) to arbitrary semigroups.

1.3. Counterexamples

Another notion that one could think of, but which does not exist, is the notion of
the “‘regular subsemigroup generated by an arbitrary subsemigroup of a regular
semigroup.”’ IL.e., if S<T and T is regular one could consider ({R/S.sR<T, R
regular}; this subsemigroup exists, but it might not be regular.

1.3. Fact. The intersection of two regular subsemigroups of a regular semigroup can
be non-regular.

Proof. Consider the regular semigroups S, and S;, S,<S defined by

S=4°({1,2) x{e=e*} x{1,2,3}),  §;=.4°{1,2} x {e} x {1,2}),

o 1 2 3 o 1 2
10 ]lele 10| e
2ie |00 21e |0
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S,=.4"({1,2} x {e} x{1,3})

o 1 3
10| e
21e | 0

(These are Rees-matrix semigroups, with matrices given above.) Then $NS,=
A#9({1,2} x {e} x {1}) is non-regular since it is given by

o 1
110
2| e

1.4. Fact. The intersection ﬂ R, of a nested chain Ry DR;D---DR, D of

Nnew

regular semigroups can be empty, or non-empty and non-regular.

Proof. Le: Ry =.#°({1,2} x{e=e?} xw + 1), i.e., R, is given by

o 1 2 3 L n_ 2w
llelele]| e | e e 0
20301090 o] 0 e

and let vR,,=‘//°({l,2} x{e=e2} x{nn+1,...,w}) (for new), given by

o mn+l w
1 e e I e 0
2(0]0]  f 0_____ e

also define

R,= |0
e

Clearly all semigroups R,, with n € w are regular, but ﬂnew R,=R,, and R, is not
regular.

An example of a chain of regular semigroups whose intersection is empty is R, =
(N, max), R,=({xeN|x=zn},max}. O

Question. Can every semigroup S be embedded (<) in a regular semigroup which
has thesame subgroups (or the same divisors) as §?

Guessed answer: No; there even exist combinatorial semigroups which can not be
embedded in a regular combinatorial semigroup.

1.5. Fact. Let K be any cardinal with K =4, and let B(K) be the semigroup of all
binary relations on a set of K elements (under relational composition). Then B(K)
is non-regular.
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Proof. B(K ) can be described faithfully by K x K Boo;ean matrices — with entries
nth NLN— 9 I_Lg nndl,lzl,

L1 =11rr1=
Wilil vru=wv, 1 aiu

tha in 1\ = 1. 1
Ill ulc Bculullls \1\1,1], T, l! i 1T 1= L,

1:0=0-1=0-0=0.
Consider the element x € B(K) given by the matrix

0

- o e
(==
oD s =

Lo o

We claim that x is non-reguiar, i.e., Vye B(K): x#xyx. Let

J l.l-T

a b ¢ d »
o f o I -
€ 5 & n *
i j okl os
Y= . % % F % ’
and assume x=xyx. Then
a+e b+f c+g d+h ] [1 1 0 0 ]
e+i f+j g+k h+l 0110
xyx=|a+i b+j c+k d+! 1 010
a b c d 1 0 00
0 o] | o 0]
(1100 ]
0110
=x={1 01 0 0
1 000
((row 2)x (column 1): e+i+g+k+h+1=0
= e=i=g=k=h=1=0,
o (row 1) X (column 3): b+ f+c+g=0

= b=f=c=g=0,
(row 3)X(column 2): a+i+b+/j=0
_ = a=i=b=j=0.

But also (row 1) % (column 2): a+ e+ b+ f=1. This however is impossible, since we
just obtained that a=e=b=f=0. [J
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The relation

eI e S
(= =
S -0
[= 2 =R e I e

L oo

can be written as x=f"'.g, where f and g are functions (acting on the right).
Indeed, the graph of x can be represented as:

Tomm———— o1

2 .2
3 *3
4 o4

which is equal to

4, > IR S— * 4
.\\.—’—/ .
oo
£ g

assuming Q0={1,1,2,2,...}.
Consider the semigroup S={{, 8)p)- Then the semigroup{S\U {s7'|seS}) By &
B(Q) is not regular (since it ~ontains the above relation x, which is non-regular in

B(Q)).
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2. Embedding an unambiguous semigroup in a regular semigroup

2.1. Results from [1]

Definition. A semigroup S has unambiguous R-order iff (Vx, y,2€8§). yz4x and
Z=,x, implies y and z are R-comparable (the same definition can be made for the
L-order).

A semigroup is unambiguous if both its R- and its L-order are unambiguous.

Definition. A semigroup S has h, (‘Dedekind height property’ for the R-order) iff
for any xe S there exists a bound (depending only on x) on the length of all >,-
chains ascending from x (the same definition can be made for L).

Remark. A semigrcup has h,; and unambiguous R-order iff the Hasse diagram of
the > ,-relation on S/=, is a union of disjoint rooted trees — so for every vertex
there is a unique dense path to a root; moreover this dense path to the root is finite.

Definition. The semigroup S is finite-J-above iff (VseS): the set J(=s)=
{xeS|x=, s} is finite.

Definition. The semigroup S, = {xe S|sx=s} is called the right-stabilizer of s in S.
See [1] or {8, part II] for more details on the above definitions.

Definition. (Properties of surmorphisms). Let ¢:S—>T be a surmorphism of
semigroups.

¢ is H-injective iff the restriction of ¢ to any H-class of S is injective.

¢ is cyclic-injective iff the restriction of ¢ to any cyclic subsemigroup of S is
injective.

¢ preserves idempotents iff for any idempotent ee T, (¢)¢~! consists only of
idempotents {equivalently the inverse image of a band is a band).

@ preserves groups (in the weak sense) iff for any group G =<7 there is a group
G'c(G)¢~' ¢ S such that G=(G")e¢.

@ preserves torsion-identities iff (Vte T): t satisfies "t =¢" and (s)p=t=s5
satisfies s"* % =",

@ is D*iff the inverse 1mage of any regular D-class of T is a unique regular D-class
of S.

@ is strongly J* iff the inverse image of a set of J-equivalent regular elements of
T is regular and is all contained in one J-class of S.

See [1] for mere details on these definitions and the following theorem.

2.1. Theorem. For any semigroup S, generated by a subset A, there exists a
semigroup S, generated by r subset of cardinality |A| (and also denoted by A),
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and a surmorphism n:i} —»S which is injective on A; the following properties
hold for S} and n:

(1) SF is unambiguous and has h, and h ,.

(2) Non-regular H-classes of S; are singletons.

(3) Left and right stabilizers in S} are aperiodic.

(4) S; is finite if S is finite; if S is infinite, then S; has the same cardinality as
S; if S is finite-J-above, then so is S .

(5) n is H-injective and cyclic-injective.

(6) n is D* and strongly J*.

(7) n preserves groups (weakly) and torsion-identities.

This theorem means that in global semigroup theory we can replace any
semigroup S by S}, and obtain properties (1) to (4) — provided the preservaiion
properties (5)—(7) of are good enough for our applications.

We shall show next that an unambiguous semigroup whose non-regular H-classes
are singletons (e.g., S for any S) can be embedded in a regular semigroup having
the same subgroups as the given semigroup.

2.2. The construction (S);

Let S be an unambiguous semigroup and let $= {3|s€ S} be a set that is disjoint
from S. Let 0 be an additional element which is neither in S nor in S.

Let (S), be the semigroup defined by the generators S USU {0} and the foilow-
ing axioms:

(1) 5;5,=s5; if 5;-5,=5; in S (where - denotes the multiplication of §).

2) 5,5,=5 if 5,-5;=531in §.

3) 00=0.

Remark. The semigroup generated by SUSU {0} and satisfying (1), (2), (3), is the
Jree product of the semigroup S, S (considered to be the reverse semigroup of S),
and {0} (the one-element semigroup). On this free product we add the following
axioms:

(4) 0s=5s0=0=0s5=50, for any se S (i.e., 0 acts as a zero).

(5) s5s=s and §s5=35, for any s€ S (i.e., s and § are inverses).

(6L) 5,5,=0if 5, %, s, (where Z, denotes incomparability in the L-order of S).

(6R) 3,5,=0if 5% ,5, (Where Z , denotes incomparability in the R-order of §).
(See [5, Vol. 2], and [6] for the free product of semigroups and related topics.)

Remark. Unambiguity of S is required for the following reason: Suppose x<_ v,
so Hae S: x=ay; therefore X = Xx¥%x = xayx = xyax. But we could have also »=x,- x>
with x, 2, ¥; 50 x, 7 =0, thus xy = x,x; y=x,0=0, which implies x =xyax = O0ax=0.
This we want to avoid since we want S=<(§),.,. However, in this case the L-order
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is ambiguous, since

Xy y
/ .
/ (.., XS, X35 XS, ), X2B, )).
x

Similar remarks apply tc the R-order.

Remark (Intuitive idea of the construction). Since we want to embed S in a regulas
semigroup we have to introduce regular inverses — hence we have relation (5) (here
we actually introduce a new inverse for every element of S; later we shall discuss
the possibility of introducing new inverses only for non-regular efements); we want
these new inverses to be regular, which follows from relations (2) and (5). Relation
(1) is needed if we want S to be embedded in the new semigroup.

Axioms (6R, L) are critical ones; as we shall prove very soon, their effect is to
make products of old elements s, € S and new elements 3; € § regular. Recall (1.1)
where we argued that regularity means ‘‘repeatability with the same results”’; in-
tuitively, one way to obtain repeaiability of a transformation s is “to go back into
the past’’ up v the moment then s was applied first; call 5 this action of going into
the past before s; so now we have the product s3 (in the group case, the backwards
movement 3 erases s; in the semigroup case §is ‘‘superimposed’’ on s). However,
going back into the past is related to the L-order: if s=s5,5,+:-5,_,5,, then the last
action was s,, the previous last action was s, _;s,; before that the last action was
Sp-254-15, €tc.; of course 5,5, 8, <, ' <, §,_15,<,S,.

Unambiguity of the L-order mear:s here that there is a unique path back into the
past (although we do not know uniquely how far back in the past the last action
occurred). Axiom (6L) now means that if we apply s; and we than go back into the
past by 3,, we make s, 3, undefined (this is what 0 means) if s, does not lie on the
path into the past on which s; is (i.e., if we try to go into a past that could not have
happened).

Dually, the R-order can be interpreted as forward movement in time; axiom (6R)
means, that we went into the past by the amount §,, and after that we move for-
ward in time by the amount s,. If however s, does not lie on the forward path that
was used by 5; to go backwards in time, then we make 3,5, undefined (=0).

In both cases: we do not go backwards on a path that is incompatible with
previous forward movements, and we do not go forward on a path that is incom-
patible with earlier backwards movements. This, intuitively, should avoid the in-
troduction of new groups (cycles).

All this appears more clearly in the following.

2.3. Normal form of elements of (S Yreg» a@nd regularity

2.2. Fact. Every element w of (S )rez IS either O or can be written (in a not neces-
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sarily unique way) in one of the following twn normal forms:
(1) r=(s)) Syl b Sl Sy 1 fn - 1(5,)
(elements in parentheses may or may not be present in the product) with

(51>)) 4> 8> > S b 2SSy <y <38 1<, 01 (<5 8))
-

not bath= (i.e., ->5,<:-0r =5<:0r - >5,<-).

The element s, is called the center of the normal form. The subwords that are
left, resp. right, of the center, are called the left-, resp. right side.

2 r=(8)t 8oty S S S 1fn - 1(Sn)
(again, elements in parentheses may or may not be present) with
(51>,) (424382, 4> 45>, < Sk 1<, <8 1<ty 1 (<, 8).
The element t, is called the center of this normal form.
Remark. Strictly speaking, the normal form is not the element re (S).,, but the
sequence W=((5), ) f1s..erin_1(,5,) €(SUS)*, with components aiternately in S

and S, and satisfying the L- and R-orderings given in (1) and (2). (Notation: A" is
the free semigroup over the set of generators A.)

It is convenient to use the following graphical representation of normal forms
(which is related to the remarks on forward and backward movement made earlier).
The normal form s,f;5y6 - £ _ | Silx " Sp_ 1En- 1Sy WiLhi

S12, 02452, 032, L 1 Z 5SS, < <5< Ap. 1<:5,

will be drawn as in Fig. 1.

— —

]
rﬂjwjii - -

~ b

o

| =—center
Fig. 1.

Here, elements s;€ S are represented by upward arrows (cf. forward movement)
and elements t_jes are represented by downward arrows (backward movement).
The relative length of arrows represents the L-resp. R-depth of the components:
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i '1
in J we have s>, ¢, in J . we have s<, 1}
s T s I
in - we have 1> 5; in —  we have 1<,s.
L |
[ s r) s

Similarly, the normal form s,f,8y05 = Si xSk 1" Sp— 16— 1S, With
512y 2,52, 020252 G<; St 1< <»pS-1<y Iy 1 <ySn
is drawn as in Fig. 2.

T

— ~

center —

Fig. 2.

Proof of (2.2). We start out with any word in (SUS)*. By axioms (1) and (2), this
word is equivalent to one in which the components are alternately in S and §, i.e.,
now every subsegment of length 2 has either the form Xy or xy. If for the subsegment
Xy, we have xZ, y then Xy =0 (by axiom (6R)), so the whole word is equivalent to
0 (by axiom (4)). Similarly, if for the subsegment xy we have xZ, y, then xy=0
and then the whole word will be equivalent to 0.

Let us assume now that adjacent components of the word w arz L-, resp. R-
comparable. We can prove then, by induction on the length of the word w
(e (SUS)"), that ‘1 is equivalent to a word in one of the above normal forms.

If the word w has length =<2, then it is in normal form.

If the word w has length =3, then it contains a subsegment of the form xyZ with
XZ,yZ=, z, or a subsegment xyz with z=, y=,2.

Let us consider the case XyZ; the comparability relations take one of the following
forms: :

x<,y<,2 or

X>,y>,7 Of X2,;y<,Z O

—

not both =

X<, y=,2
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In the latter case we can reduce the length of the word w as follows: since there exist
u,ve S with x=yu, z=uy, we can write the subsegment XyZ as yuyvy, which by
axiom (2) is equivalent to @yyyp (if u or v=1€S' we do not write # or 0); this is
equivalent (by axiom (5)) to #p0 which is vyu (by axiom (2)); hence we have replaced
the subsegment %yz (of length 3) by the subsegment vyu of length 1.

The case xyz is dealt with similarly: the comparability relations are

X<, ¥<,2 or X>,y>,7 Orf X=,y<,Z Of X<.,y=,Z

-

not both =

In the latter case we can reduce the length of the word w.

Inductively, we obtain that the word w is equivalent to a word in which all adja-
cent components are comparable (R or L as given by axiom (6)) but such that the
comparability relations for three adjacent components always take the form
x<y<zorx>y>zorxzy<z(not both =) — where R and L alternate. The case
X< y=z does not occur anymore,

It is now easy to see that the configuration x, <y, cannot occur left of the con-
figuration x, > y, (otherwise, since the word is finite, at some point there is a transi-
tion from <<<:+ to --->>>, where we have then -<-=-; this contradicts the
assumption that this configuration has been eliminated). Therefore the orderings in
the word take the shape >>:-->=<< .- <<; at the center we have -=-<. (not
both =, since -=-=- is an instance of -<-=-).

This proves the fact. [

2.3. Corollary. If S is finite, then (S)., is finite.

2.4. Fact. The semigroup (8S),, is regular.

Proof. We shall prove that if w=(s,)f;5305 - Fy_ 1Sk e == Su— 114 1(5,) With

(1> 1>,85>, B> > e 2SS, <y < S 1< I (< 50),
then w'=G ), - 15u_ 1 LSite— 1 1,5 6(5)) with

> ) e 1> Sy > > 2, Syl 1< <0<, < L (<, s1)

is an inverse for w (i.e., w=ww'w).

This will be proved by induction on n, the length of the shortesi normal form
representation that exists for the element in (S),.

First, those elements having a normal form representation of length 1 satisfy our
claim (this is the content of axiom (5): s=s8s and §=3s3).

Assume now that elements having a normal form of length shorter than the length
of w (and center in S) satisfy our claim. Then

ww'w
=[S Safs ++* Sp 1 lno 1 NGy - 15—y - 5 DS 252 S L= 1 (8]
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Since 1, <,S,, ;<. t;, there exist @, b €S such that 1,_,=s,a, 5,=b1}; so

=[(5))0182** Sy 1Tn 1 (SV,) - $p@- Sy g+ 1255+ bsy - GOS8 818, 1(8)]

=SSy Sy 1l 15005, -+ ySbstisy - 5, by

r4 7 n=

= S2 Syl 1 Mtn - 1801 2521118152+ 5,1 Fn - 11(5p)-

Thus we have reduced the lensth of the normal form. We can continue as follows;

s E waise NSa vaaw aalsi vy w wiiaa

u
since 1, >, Sp_1» 11> ;5 there exist c,de S, with s,_,=ct,_, s=1,d; then
ww'w= ()80 g by Mt 1Sy g - 2524111 - d - by 5y 1 1(S,)

=51 Saly -+ Cly 1Sy y o Sty dly 5,11, 1(S,)

=(s)y[:0y Sy MBa— 1 02505205 7 8, 11— 1 (S,

Thus, inducrively, we obtain ww'w=w.

The case of elements of (S),,, representable by a normal form with center in
S is treated similarly: the inverse of (S\)(S2fr SpfiSkr1 " Su—114-1(s,) With
;>8> 45>, 1> 4> 4855 Li< ;81 <y (< 8,) IS

Gy 18p_ 1 Sk 1l Sk 15 1(8))
with

($n> )ty 1>, Sp 1> 2 S 1 Pl <u Sk <y <<, H<,4 (<, 5).
Finaily, the case of the element 0 is trivial since 00 0=0 (axiom (3)). O

2.5. Fact. The normal form representations of elements of (S)., is usually not
unique. The following holds:

(@) If as=, s, then E§-_as=§s in (S)eg-
(b) sb=s, then sb-sb=55 in (S)e-
Proof of (a). ((b) is proved dually.)
asas =: as - asss (since s5s)
=as-as-cas-s (since as=, s, dceS': cas=s)

=qs-as-as-¢-s \hy axiom (2); € is dropped if c=1)

=as-&- s (by axiom (5))
=cas-s (since cas=as- ¢, axiom (2))
=5-s

2.6. Corollary. (a) If as=, s, then (Vt,,LeS): ast, ast, = st, - st,.
(b) If sb=,s, then (Vi,,1,€S): 1;sb-tysb=1,s- 1,s.
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Proof of (a). ast,- ast;=1,as-ast,=1,3s1, (by the fact). Now use axiom (2).

2.7. Corollary. Elements of (S),, that do not belong toc SUSU{0} do not have
unique normal forms.

We shall see in the appendix that the above fact is the ‘“‘only source of non-
uniqueness’’ of the representation by normal forms.

2.4. Relations and their inverses

Before we deal with the non-uniqueness of the representation of an element of
(S)re, by normal forms, and prove the main properties of (S )reg (regularity, embed-
ding of S, etc.), we revisit example (1.2.2) and see how it can be made to work (i.e.,
the group divisors of S are preserved, and we obtain regularity).

Recall the idea of 1.2.2: embed S< B(S') (the semigroup of all binary relations
on the set S!, under composition of relations). Within B(S') consider the subsemi-
group Sp which is generated by the set SU{s™'|seS} (where s~' denotes the
inverse relation of s). Then S=<Sp. This semigroup could be non-regular, and one
can show that it may contain groups that do not divide S (i.e., that are not homo-
morphic image of a subsemigroup of S).

Let us now introduce the additional assumption that S is unambiguous.

2.8. Fact. Assume S has unambiguous L-order. Then s,55' =0 in Sy iff s\ 2. s> in
S (where 0 is the empty relation).

Proof. We have: 5,55 ! #0 iff (Ixe S'): (x)s,57' 20 iff (Ix,ueS'): ue(x)s,s; ' iff
(Vx,ueS'): us,=xs,.

(=) If for some u, xe S': us,=xs,, then s, and s, >, us, (=xs,). By unambiguity
of the L-order of S, this implies 5, Z, s,.

(=) Suppose 5, =, 5,, i.e., 512, 5, Or §; <, 5.
If 5,=, 53, then (Ixe 8'): x5, =5,. So for u=1: x5, = us,.
If s;<, S, then (FueS'): s;=us,. So for x=1: x5, =us,. [

This fact means that Sp satisfies axiom (6L).

We mentioned already that § satisfies also axioms (1) (embedding), (2) (since for
relations (R, R,) ' =R;'R;"), (3) and (4) (where here 0 is the empty relation), and
(5).

To get axiom (6R) to hold (instead of (6L)) we can use the dual construction of
Sg: Let B*(S') be the semigroup of all binary relations on S', under composition —
but this time we let the relations act on the left. It is easy to see that B*(S') is
isomorphic to B(S'), by the isomorphism R~ R™'; however Sg.<B*(S') defined
by Sg=(SU{s 's|seS})pss) is not necessarily isomorphic to Sz. This follows
from:
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2.9. Fact, Assume S has unambiguous R-order. Then

s;ls;=0in Sge iff &S inS.

(The proof is dual to that of 2.8.)

Now S=<Sz. and Sg. satisfies axioms (1) through (5) and (6R) — but (6L) does
not necessarily hold.

To obtain a semigroup containing S and satisfying all the axioms (1)-(5), (6R and
L), we combine Sg and Sg« as follows:

First map the free semigroup (SUSU{0})* onto Sp (and onto Sz.) by:
we(SUSU{0})* ~(w)p e Sg, where (w)p is obtained from w by replacing com-
ponent s by the relation se SC Sg, and § by s ' e 8g, and 0 by the empty relation;
similarly p* (SUSU{0})* —»Sp..

Clearly ¢ and p* are surmorphisms.

From now on assume that S is unambiguous.

Next define the relation = on (SUSU {0} by w, =w, iff

(1) (w))e=0 or (w;)p*=0 (i.e., w, acts as the empty relation, on the left or on
the right), and (w;)p =0 or (w,)p*=0, or

(2) neither w; nor w, act as the empty relation (neither left nor right), and
(wy)o =(w,)p and (w,)p*=(w;)p*.

2.10. Claim. = is a congruence on (SUSU{0})*. Denote (SUSU{0})*/= by S..

Proof. Reflexivitiv and symmetry are obvious. It is also easy to see that = is com-
patible with left and right multiplication in (SUSU{0})*. Transitivity is easily
showed as follows: let w, = w,, w,= w3; from the definition, either w,, w,, w; never
act as 0 (neither left nor right), or each of w;, w,, w; acts as 0 (on the left or the
right — not necessarily all on the same side). If w,, w,, w; never act as zero, then
(by definition of =) (w)e=(w,)@, (W2)o=(w3)¢ and (w\)p*=(w,)p*, (W)e*=
(w3)p*; hence w; = w;. If w;, w,, w; can act as 0, then [(w,)g =0 or (w;)p*=0], and
[(wy)o =0 or {wy)p*=:0], and [(w;)@=0 or (w;)@p*=0], hence w,;=w;.

2.11. Claim. S. satisfies all the axioms (1)-(5) and (6R), (6L). (Recall that we
assume that S is unambiguous.)

Proof. (1) s;5;= (s, 53) since (s;5;)¢ =((s, - 5,))¢ and (5,5,)@*=((5, - 51))0*.

(2) and (S) are proved similarly.

(4) s0=0 since (s0)p=0 and (0)¢ =0; the rest of (4), as well as (3), are proved
similarly.

(6L)Y If 5, Z, s,, then (5,5,)p=5,5;' =0 in Sy (by 2.8), thus 5,5, =0 by the defini-
tion of =,

(6Ry If 5,2 55, then /§,5)p*=0 in Sg. (by 2.9), hence 3,5,=0, by the definition
of =,
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2.12. Claim. S<8S, and {s™'|seS}=S..

Proof. If s, =s;, then (since sy, s; € S never act as 0 in Sp or Sg«): (5))¢ = (s,)¢ and
(51)9*=(s,)p*. Applying these to the element 1 € S' we obtain s;=1- s1=1)(sy)g)=
(D)(s)e)=1-5,=5,. So s;=s5,. If § =5, then (since they never act as 0):
(5.)¢ = (5,)p, thus s7'=s;1; hence (by a remark in 1.2.2), 5, =s,.

2.13. Fact. Any semigroup generated by SUSU{0} and satisfying all the axioms
(1)-(6) is a homomorphic image of (S)e,-

Proof. Assume T is generated by SUSU{0} and satisfies the axioms. The sur-

morphism h:(S),, 7 is defined by associating to a product of generators in

(S);eg the same product of generators in 7. This is a function: if two words

wy, w, €(SUSU{0})" are the same when considered as products of generators in

(8)reg» then wy, w, must also be the same in 7, since T satisfies the axioms (1)-(6).
Moreover k4 is a morphism, by the definition. [

2.14. Corollary. S_ is a homomorphic image of (S);e,.

2.15. Fact. The homomorphism h:(S),, ~S. is injective when restricted to the
subsemigroup generated by S.

Moreover, this semigroup generated by S in (S).,, is isomorphic to the
semigroup S (i.e., the morphism se S—se€(S),, is one-one).

The dual result holds for S.

Proof. Let 51,5, € (8> C(S) and supose (S))h={s;)h; then s, =s,, which implies
(by the proof of the claim “S=S_.”’) that s,=5, (same element in the set S).
Similarly: (5;)k = (3;)h implies s; ! =55, hence s, =s5,.

2.16. Corollary. S=<(S),; and S=(S),-

Instead of the ‘two-sided’ relation =, we can define the ‘one-sided’ congruences
=, and =, on (SUSU {0}, as follows: w, =, w, iff

(1) [(w))e =0 or (w)p*=0] and [(w;)p=0 or (w;)p*=0], or

(2) neither w, nor w, ever act as the empty relation (neither on the left, in Sg-,
nor the right, in Sg), and (w;)p=(w>)e in Sp.

The relation =, is defined dually.

Remark. =, (resp. =,) can also be considered as a relation defined on Sy (resp.
Sg.) — instead of (SUSU{0})*.

2.17. Claim. =, is a congruence on (SUSU{0})*, and on Sg (and dually for =,).
Denote (SUSU{0})* /=, (=Sg/=,) by S, (resp. S_)).
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Proof. Same as for the previous claim, for S..

2.18. Corollary. S, and S., are homomorphic images of S.. (and hence of (S),,).
Moreover, the homomorphisms are injective when restricted to the subsemigroup
S (or the subsemigroup {s~'|seS}).

2.19. Ciaim. S., and S_, satisfy all the axioms (1)-(6). (The proof is the same as
for S.).

2.20. Claim. E.=(S.,X%S. )susuqo; (the product in the category of semigroups
generated by SUSU{0}, see {1, 1.6) for definitions).

Proof. To [w]. € S. asso-’ate ([wl.,,[wl.,)e(S., xS, )su sUfo}-

If [w]. acts as O on the left or the right, then [w]. =[w]_, =[w].,.

If [w]. never acts as zero (left or right action), then fw]., and [w]., together
determine [wl,. (by definition of =).

Finally we have the following commutative diagram:
) .

2.21 \ S- . /

2.22. Fact. The semigroups S., S.,, S., are regular. If S is finite, then they are
finite and their subgroups divide subgroups of S.

(Recall the definition of semigroup division: A divides B, denoted A4 < B, iff some
subsemigroup of B maps homomorphically onto A4.)

Proof. Since S_, S.,, S, are homomorphic images of (S)reg, the fact follows
from the regularity of (S)e; — and, in the finite case, from Theorem 2.23 which
will be given nexi. [

Remark. S. is not necessarily isomorphic to (8)reg- For example if S is a finite
monoid and its {(unique) maximal J-class is a non-trivial group G (the ‘group of
units’), then s"'e G¢ S (for se G); however in (S)reg» 5¢S (as we shall prove
later.

2.5. Properties of (S),,. and cf the embedding of S<(S Yreg
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2.23. Theorem. Let S be an unambiguous semigroup, and let (S hreg De the
semigroup constructed in Section 2.2 (and let 0 be the zero of (S)eg). Then
S =<(S);¢g (Corollary 2.16), and (S),, has the following properties:

(1) (S)req is regular (Fact 2.4).

(2) The L (resp. R or J) -order or (S),,, restricted to elements of S, is the L
(resp. R or J) -order of S. (i.e., if 51,5,€S and 5, <5, in (S)q, then s;<s, in S,
where < stands for any one of <,, <, or <,).

(3) Every D-class (resp. J-class) of (S)rep, éxcept the J-class {0}, contains one
and only one D-class (resp. J-class) of S.

Precisely: a D-class of (S)e, is obtained from the D-class of S which it contains,
by “‘adding rows and columns’’ in the Green-Rees picture.

In particular this implies that an H-class of (S)., lies either entirely in S (and is
an H-class of S), or does not intersect S.

This implies that every group of (S, is either a subgroup of S or a Schiitzen-
berger group of a non-reguiar D-class of S — and thus divides S.

And: if every non-regular H-class of S is a singleton, then every subgroup of
(S)ceg is isomorphic to a subgroup of S.

(4) If S is finite, then (S), is finite. If S is finite-J-above, then (S),., is finite-J-
above except at zero (i.e., Vx#0 in (S),, the set {we (S)reg| w2, x} is finite).

If S is infinite, then S and (S),., have the same cardinaltiy.

(5) If S is torsion (resp. aperiodic, resp. bounded torsion satisfying x°*?=x),

then (S).e, Is torsion (resp. aperiodic, resp. bounded torsion satisfying
x1+a+b=xl+a).

Remark. The restriction that S be an unambiguous semigroup is not very strong,
since by Theorem 2.1 we have: for any semigroup S there exists a semigroup S;
such that #:S;—>S; S is unambiguous and its non-regular H-classes are
singletons; the morphism # preserves important properties of S, regarding the
subgroups and regular elements; if S is finite (resp. finite-J-above), then so is $;.

Proof of 2.23. (1) We proved already in Corollary 2.16 that $=(§),,, and in Fact
2.4 that (S),, is regular. That S<(S);, also follows from Lemma 2.26.

(3) We shal prove next that every D-class of (S),,. except the J-class {0}, con-
tains elements of S. This will follow from:

2.24. Fact. Any non-zero element x €(S),., is D-equivalent to the center (€ S uSs)
of any normal forr1 that represents Xx.

Proof. Let w=8,f;S36> - Ly _ Sl Sn_ 11,1 S, With
S>>, t] >85>, t2>_),>°">;, Ly (2,85 =, 0H<, el S, <L, |< s S

be a normal form representing x € (S),e,, X#0. (If the center is in S, the reasoning
is almost identical.)
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We claim that x=,5,f;5,5 - f,_,5;. The ordering =, is obvious; the =,-
ordering is proved by induction on 7 —k (i.e., the length of the part of w which is
right of the center).

If n—k=0, then x=5,1;5;0,** by _Sk.

In general: since #,_, <S5, and 5, _; <, [,_, there exists v,ueS with 1, _,=s,u |
and s,_;=vl,_;. Then !

X-u=8118pb - Sg - Sp_rln_y Sn- U

n

=851 Syty SVl Loy

=511 S35 S0 ln-1
=851118282° S *"Sp-

Thus, xu is obtained from x by simply removing f,_,- s,; this implies xu=; x.
Moreover: x-u<zx. Hence xu=, x.

Proceeding inductively we obtain x=, 57,56 -+ t; _ | 5.

In a similar way one proves that sf;sy6 - f;_S¢=, 5. This proves that

ve o m
Jﬁybk. L

2.25. Corollary. Every non-zero D-class (hence every non-zero J-class) of (S)reg,
contains elements of S.

Proof. By the above fact, every element x&(S),,, with x#0, is D-equivalent
(hence J-equivalent) to either an element of S or an element of § (depending on the
center of the normal forms representing x). But, by axiom (5), every element of §
is D-equivalent to an element of S. [

Proof 0f 2.23 (contd). T
zero D (resp. J) -class of (8),,, contain
the following lemma:

art (2) of the theoren: and to show that every non-

at most one D (resp. J) -class of §, we use

7]

2.26. Lemma. (1) The element 0 of (S),, cannot be represented by any other
normal form.

(2) For all 5,,s,€S: 5;#5, in (8)eg-

(3) Let x€(S)eq, With x#0. Then all normal forms representing x have the same
length (as elements of the set (SUS)*).

(4) If 5€ S<(S);e,> then the only normal form representing s is s itself.

Procf. The lemma follows from the uniqueness of coded normal forms - and this
is defined and proved in the Appendix. O

Remark. By (3) of the lemma, a length function is defined for the elements of
(S)eg- Clearly: for x, y € (S)y,: length(xy) <length(x) + length(y).
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2.27. Fact. Let s51,5,€S, and let < stand for one of <,, <,, <,; let = stand for
one of =,, =,, =,, =,. Then

i<, In(S) Iff s.<g,
iSS; MM Wy YJ Si=S N

$1=8,in (S)y Uf sy=s5,in S.

Proof. We consider the case of =,; the other ones are very similar.

If 5y=<, s, in (S),,, then cither s;=s, (and then §,<, s, in S) or there exists
1o £ OY) wrath o0 __ o De tha anhmuvn lnsenmnne w2l Ca o io Af tlan Frccns 2o 573 3~ 53
A C\U’reg WILIL O] = AQ). DY LIIL AUUVL ILiHiiId. A+ V. JU X Id Ul ilC ULl J]Jqlz_}’z i
Pn-2Xn-1Fn-1%n with x>, y;>, X224 Y22 <y Xn 1<y Vn-1<sXp

Since s;#0 we have, by the above lemma: y,_ =, x,s, (otherwise x-s,=0
in (S)eg). If y,_1<j3x,-5, or if x, or y,_, is the center of x, then x; 7, x, 7,
P 2Xn—1Fn—1XnS2 15 @ normal form. Otherwise y,_, =, x,,- s;and (FJue S')y, | - u=
X,S,; moreover (FveS)x,_=vy,_, since X,_ <, ¥n_1. So

XSy=X ) 1 X3 P2 Y 2U¥Vn- 1 Vn-1Vn- 1l
=X P12 V20 Pu-2V Yn-1 u
=Xy 1 X2 V20" Pn- 20X 5.

Again y,_,Z, vx,s, (otherwise x-5, =0 in (S),,)- If y,_2< x5, or if x,_
or y,_, is the center of x, then x; ¥, x; 7, -+ §,_;bx,s, is a normal form. Other-
wise we continue, inductively. Finally, there exists i(<n) such that s,=xs,=
Xy P1 X393+ Pu_ 1Sy, for some teS', and x, 9, %, 5, - §,_;15; is a non-zero normal
form (i.e., y,_;<;1s,, Or: y,_;=;ts and y,_; or Is; is the center of xs;).

However, by Lemma 2.26 the element s, €S is itself its unique normal form
representation; hence the normal form x, y,x; 7, -+ ,_;ts;, must actually be equal
to ts,. Hence s, =fs, with 1S, i.e., 5,<,5,in §. O

2.28. Corollary. Every D (resp. J, R, L) -class of (S),, contains at most one D
(resp. J, R, L) -class of S.

This corollary together with Corollary 2.25 implies that every non-zero D (resp.
J) -class of (S),, contains one and only one D (resp. J) -class of S.

Proof of 2.23 (contd.). To finish the proof of part (3) of the theorem we need the
following:

2.29. Fact. Let s,t€ S, and let x€ (S),,, be such that s<,x, 1<, x in (8)eq- Then
X is an element of S.

Proof. Let x; ;X5 73 *** X,_ { J»— 1 X, D€ @ normal form representing x (since s< , x...,
we cannot have x=0).

We have s<,x and 7=, x; if s=x or t=x, then xeS. In the other case: there
exist non-zero elements u, v € (§),, such that s=xu and 7=vx.
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Then the normal form representation of vx is of the form wp,x;, .| = X, _ | Py | Xn,
where we (S),, and P, X+ X,_ 1 Fn_ 1 X, 18 the part of x that is right of the center
(including the center if center=§,€ S and y, <, x;, ). This follows from an induc-
tive reasoning that is very simiiar to those used in the proofs of previous properties
of normal forms.

However, since ¢ € S, the normal form vx must have length=1 (by Lemma 2.26).
Hence the part $5,X5 .1 - ¥,-1X, does not exist, and x is of the form x, §, --- 9, _ 1 x3
with x;>, % >,->,¥,_ 124 X,. Hence, in particular, the center of the normal
form representing x is x; € S.

By a similar reasoning, this time using s< , x, (hence s=x, ¥, - x, w’) one shows
that the part of x which is left of the center is empty: hence x is equal to its center
x,€8.SoxeS. O

2.30. Coroliary. If s€ S, x&(S)eg and s<, x in (S);ey, then xe 8.

From this corollary it follows that every H-class of (S)., which intersects § lies
entirely witninn §. Moreover this will then be an H-class of S (by Fact 2.27).

From Fact 2.29 it follows that the Green-Rees picture of a non-zero D-class 4
of (8),, is obtained by taking the unique D-class J of S that A contains, and
adding rows and columns: J will appear as a full rectangle within A -as displayed
in Fig. 3.

] e |H
| _
55 -
A -
Fig. 3.

If the H-classes hy, h, C S belong to the D-class 6 C S and if the }-class H of
ACAS) g is =, hy and =,k in (S),,, then HC S, by Fact 2.29,
The siatements on the groups of (S),., follow easily now.

Proof of 2.23 (4). That (S)reg is finite if S is finite follows from the normal form
representation.

If S is infinite, then (S)reg has the same cardinality as S, since S<(S),,, and
(S):cg is a homomorphic image of the free semigroup (SUSU {0})*, which has the
same cardinality as S.

Suppose now that S is finite-J-above. To show that for every non-zero element
X €(S)peq the set J(zx in (S),,) = {we(S),egl w2, x in (S).,} is finite, it is enough
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to show that (Vs §): the set J(=s in ()., is finite (since by Corollary 2.25, x is
=, to an element in S).

Let we(S),;— {0} be such that w=, s in (S),,. So, there exist wy, w; €(S),,
such that w,ww,=s. Let ue SUS be the center of w (in some representation by a
normal form). Then it follows from the definition of normal forms, that u (or &)
is =,-above the center of w;ww,; moreover the center of w,ww, must be equal to
s (by Lemma 2.26).

Thus we proved that if w=,s in ()., where s€ S, we(S),,—{0}, then the
center of wis s,€S or §,€S with 5,=,s.

Hence, since S is finite-J-above, there are only finitely many possible choices
for centers of elements we(S),, such that w=,s. Moreover, by the shape
of normal forms, there are only finitely many elements in (S),, with a given
center if S is finite-J-above (recall that the components of a normal form satisfy
> D> > ez center < - <, <y < sl )

This shows that for every element s€ S, the set {we(S),/W=,5 in (8),,} is
finite; hence the same holds true for any element x€(S),, x#0 (as mentioned
earlier).

Remark. If S is infinite, the element 0 has infinitely many elements =, -above
(since VseS: 52,0 in (S)e)-

This proves the theorem. [

Remark. By the theorem, unambiguous semigroups are ‘close’ to regular ones.

-~ -~y

Conversely, if S is regular (and A is a set of generators) then $; and S; are

unambiguous, and regular (this was observed by J. Rhodes).

(Proof. éj" has unambiguous L-order, §; has unambiguous R-order; moreover, the
canonical morphism #; S/‘? —»S7 is an R*-morphism, which implies that # preserves
the R-structure of regular semigroups. Hence, if S is regular (=8 regular), then
S“,;;’; has also an unambiguous R-order). See also [1}].

2.6. Preservation of (bounded) torsion. Length of products
2.6.1. Torsion and bounded torsion

2.30. Proposition. If S is torsion (resp. aperiodic), then (S), IS torsion (resp.
aperiodic).

More precisely: Suppose every element s of S satisfies one of the identities
s9t0 =59 where (a,b) ranges over some subset X of N xMN; then every element
W€ (S)rq Satisfies one of the identities wtrerb_wi+a \where still (a,b) ranges over
the set X.

In particular, if S is bounded torsion satisfying the identity x9+P = x% (for a fixed
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pair (a,b)), then (S), is also bounded torsion and satisfies the identity x' tavh
l+a
x'*e,

Remark. We are still assuming that S is unambiguous. If S is not unambiguous, then
by Theorem 2.1: if § is torsion (every element of § satisfying some torsion identity
x9tb=x" (a,bye X for a certain set X C N x N), then S; is torsion (with the same
set of torsion identities).

Proof of 2.30. Assume every element s of S satisfies an identity s?*?=5%, for
(a,b)e X (where X is a given subset of N XN, depending only on S).

Let us first prove the proposition for elements we(S),, of length 0,1,2 or 3.

The element 0 of (S),, trivially satisfies any identity of the form xltarb_ yl+a
(no matter what set (g, ) is taken from). Also, if an element s e §=<(S),, satisfies
s9*P=5° then it also satisfies s'*“*%=5!*%, This takes care of elements of length
Oorl.

Assume the length of w is 2. Then w is of the form a- ba, or ba-a or a- ab, or
ab - a (since we must have L, resp. R-comparability). We shall only consider the case
w=a- ba, since the other ones are dual.

If a, ba, then w?=0; thus w?=w3=-.. = w" (for any n), hence w satisfies any
identity of the form w!*#*%=w!*" (for any A, k).

If aZ ,ba, then cither a=,ba or a<;ba.

If a=,ba, then (Ice S') ba=ac. Hence

wl=abaaba=aacaba=acaaab
=gtdb=abac=ab*a  since ac=ba.

More generally: w"=a57¢_1, as is easy to check. Therefore, if § is torsion (resp.
aperiodic), w will be torsion (resp. apericdic); and if be S satisfies the identity
x"*¥=x* then w will satisfy the same identity, hence also the identity x' *#+*=

1+h
x'*a,

The case a< ,ba cannot arise if S is a torsior semigroup, as follows from the
next lemma.

2.31. Lemma. If S is a torsion semigroup, then it is impossible to have a< ,ba or

a<, ab. (This lemma expresses the fact that torsion semigroups have tae so-called
‘stability’ property.)

Proof. If a<;ba, then (IceS')a=hac; hence (Vn>0)a=>b"ac". Hence:
ba=b"*'ac", Vn=0. If S is torsion, there exist 4, k=1 with ¢"=c"**. Therefore
ba=b""ac" = b"* ge" k1= gc* ! (since b"ac"=a, Vn). So ba=ac* "', where
c*~'eS'. This however contradicts the strictness of a< aba. The case a<,ab is
treated similarly. O

Proof of 2.30 (contd.). We could now directly proceed to the inductive siep.
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However it is useful to deal with the case of length three to see how the torsion
bound increases.

Length=3: The element w has the form abc of any of its dual forms. Then if
caz, b or caz, b we have w*=0, so w' *"**=w!*" for any h,k>0.

If ca=,b, ca=,b then (Ax, ye S') b =cax=yca. Then

w2=abc abc=a caxcaycac=axcacacayc

=a¥ca yc=aycaxc=acax’c  since yca=cax.

More generally w"=a cax" c. Hence if S is torsion (resp. aperiodic), then w is
torsion (resp. aperiodic), and if xeS satisfies the identity x"*¥=x"  then w
satisfies that same identity, hence also w! ™7tk = !4

If ca<,b, ca=,b then (Ax, yeS') ca=bx=yb. Now w?>=abcabc. And:

3=abcabcabc=ab ybb bxbc
=abybxbc=abbx’bec.

In general: w"=abbx" 'bc. So, if S is torsion (resp. aperiodic), then w is tor-
sion, resp. aperiodic. However, if xeS$ satisfies x"*¥=x" then w satisfies
w!th= wl+h+k The other cases (ca<, b, ca>, b, etc.) cannot arise if S is torsion
(by the above lemma).

Assume w has length m, m=3. Let w be of the form

w=LcR=<@ @

where L is the left side of w, R is the right side of w, and c is the center (e SUS).

If w?=0 then, as already remarked earlier, w will satisfy any equation
whthtk— Wli+h with b k>0.

So, we will assume from here on that w?%0. Moreover, for n=2 we can write
w"=L(cRL)""'cR. To show that w satisfies an identity w'*"*¥=w!*" it is
therefore enough to show that cRLc can be written as uc where u is an element of
(8)reg Of length <2, Then indeed w” = Lu" " 'cR, and we showed already that every
element of length <2 satisfies a torsion identity of S: u"*t* = y*; that way we ob-

tain: w!t#* = w!+" The proposition will now follow from the following:

c

2.32. Claim. cRLc can be written in the form uc, where u has length at most 2.

To prove the claim we have to analyze various cases. First we consider the situa-
tion where R (or, dually, L) is empty. So:

cRLc= @

c Cc
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Four cases arise, according as ¢ belongs to S or §, and the left-most coordinate
of L belongs to S or §S.

Case (A): c€S, and the left-most coordinate of L is £, €S. Then

cRLc=c’ ‘% c
X4 Xq

Recall that we assume w2#0; hence cZ, x,. Also, since Lc is a normal form:
x> ;X,>,--->c. Hence, since S is torsion (hence stable - or use the lemma
proved in this section): ¢<,x;. Let ae§ be such that x,=x;a (since x;>4 x,).
Then, by reducing:

Thus: Lc¢ has been replaced by a normal form of smaller length.
Case (B): ce S, and the left-most coordinate of L is x; € S. Then

cRlLc=c¢

(using a similar reasoning as in case (1), since w?#0 and x; =bx,<,., etc.; here
x; could actualiy be c itself, if w=LcR=Lc has length 3). Again .c has been
replaced by a normal form of smaller length.

Cases (C) and (D) (where ce S) are dual to cases (A) and (B).

Finally (still in the situation where R is empty), applying cases (A) and (B) (induc-
tion on the length of Lc) we obtain: cRLc=cLc has length one and can be written
as uc (with ue§ if ceS; and ue§ if cef).

The case where L is empty is dealt with similarly.

We now consider the situation where neither L nor R are empty, and we shall,
by applying reductions, replace Lc¢ or ¢cR by normal forms of smaller length.

Again 4 cases occur according as the lefi-most coordinate of L and the right-most
coordinate of R belong to S or to S.
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Case (1): The right-most coordinate of R is x, € S, and the left-most coordinate
of L is y,€8. Then

cRlc=c T

Y1 Y2

Since w?#0, we have x, =, y,. Assume X, =, », (the other case is dual); let x, =x,a
(x, could be c itself). Then

So c¢R has been replaced by a normal form of smaller length.
Case (2): The right-most coordinate of R is x; € &, and the left-most coordinate
of L is y,€S. Then

So, cR has been replaced by a normal form of smaller length, while Lc has been
replaced by x, Lc¢ which is a word that has the same length Lc, but which still has
to be raduced.

If x, y,>, 2, then x| Lc is already reduced. Assume x; y, <, y;; then by applying

N |

the same reasoning as for the situation

<

(cases (A), (B), where R is empty), we make the string shorter and shorter. In the
end two cases can occur:

c Cc
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Case (2a): x,Lc is finally reduced to a normal form

7
Case (2b): x; Lc reduces to a normal form
a I 1c
(undcr the conditions of case (2) this can only happen if ce §); here a<,c. (i.e. ¢

will no longer be the center of the new normal form).
If case (2b) ever occurs we shall have:

c

cRle=c¢ al |c, wherea<,_ C.

Then, applying again the reasoning of cases (A) and (B) (where this time the
equivalent of *‘L’’ is empty), R’ will be replaced by shorter and shorter strings, and
finally

cRlc=c¢ c
a

S0 we can write cRLc=uc, taking

l (length 2).
u=cl

aa

If case (2b) never occurs, we aiternately apply cases (1) and (?a) and make L and
R shorter ... until one of L or R disappears (length 0). Then we are back in case
(A) or (B). So here cRLc has length one (see cases (A) and (B)), and cRLc=uc (u
of length 1).

Further cases occur, when the right-most coordinate of R is X, €S, but these
cases are dual to cases (1) and (2).

This proves the claim, and hence the proposition.
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2.6.2. Bound on the length of products

The reasoning that proves that bounded torsion etc. is preserved (when we go
from § to (S),,) can be generalized. If w;, w, are two elements of (S),,, we can
give a good upper bound of the length of w;w, (when represented by a normal
form). This product formula connects the two ‘‘dimensions’” that normal forms
have: the length (number of coordinates, alternatingly in S and S), and the ‘depth’
(still to be defined) of the center coordinate (see Fig. 4).

depth

Fig. 4.

In the case of stable semigroups, the J-order plays the role of the depth-order.
Recall that a semigroup is ‘stable’ iff the following holds: let a<, b (resp. <),
then a<, b (resp. <;) iff a<gb.

Let /(-) denote the length function; let w;, =L,c,R; and w, =L, R, be elements
of (&) (Where L, R, ¢ denote respectively the left side, the right side, the center).

2.33. Proposition. 4ssume S is a stable semigroup. Then:

) If 1340, then l(w,wy)<l(w))+l(c; Ry).

() If ey 240y, and if ¢ Ry =c,R| Ry, where Ry is the set of those coordinates x of
R\ for which x¥;c,, then:

[(wywy)=I(Lc;R)) + (3 Ry).
Proof. Part (2) of the proposition is obtained by iterating part (1). The proof of part

(1) is very similar (case analysis) to the proof of preservation of bounded
torsion. [l

If S is not stable, then the depth condition ““c;®,¢,” is to be replaced with the
following:
(Va,c,z40) (VX x2405): P X and a %, x.

It can be checked that if S is stable, these two conditions are equi* “lent.
For arbitrary semigroups one could define: b is deeper than a iff

(a, B): bs‘yﬁ[<,,,» or <:9|asfa.
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{If S is stable this is equivalent to b<,a.) Weaker definitions of depth could be
devised, and the proposition would still hold.

2.7. Further properties, and variations of the construction (S).e

2.7.1. Unambiguity except at zero

Recall the definition of unambiguity (Section 2.1). More generally, we define that
an element s is L-unambiguous iff Vx, y: [x=,s, y=,5] = x%, y. Similarly we
define ‘R-unambiguous’ and ‘unambiguous’ (both L and R-unambiguous). ‘Am-
biguous’ means ‘not unambiguous’.

One can show easily that the set of L (resp. R) -ambiguous elements of a
semigroup forms a left (resp. right) ideal.

If a semigroup contains a zero, then this zero is always both L and R-ambiguous.

Definition. A semigroup is unambiguous except at zero iff it is unambiguous, or if
it contains a zero and all non-zero elements are unambiguous.

We mentioned earlier (in the first remark of Section 2.2) that if an element s€ S
is L or R-ambiguous, then s is identified with 0 in (S),,. It will follow from the

cnmoa A fo cmmae o PR N P S o e braaa

Appendix of this paper that unambiguous elements of S are kept distinct in (S,
It follows that in order to have S=<(§),, (with no elements of S identified in
(8)reg), it is enough to assume that S is unambiguous, except at zero (here we
assume that if S has a zero, this element will also be used as the zero of (S),,).

In fact more is true:

All the properties of (S),, proved so far (and those that will be proved in the
Appendix) hold if we only assume that S is unambiguous except at zero.

In that case, if S has a zero, no new zero has to be added to (S),, (but the one
of S can be used).

If S has a zero O but is not unambiguous, except-at-zero, then S;/(0)n~! is
unambiguous except at zero. (Notation: #: §; S is the canonical morphism (see
Section 2.1); (0)7 ! is an ideal of S}, and S} /(0)n™! is the Rees quotient over that
ideal).

2.7.2. Green relations of (S),
The J-order, and the D-relation

2.34. Fact. Let w| and w, be elements of (S),.,, represented by normal forms. Let
wy, W, have respective centers c,,c,; if ¢, (or ¢,) belongs to S, we write ¢; =5, (or
¢, =5); if ¢; (or c;) belongs to S, we take c,=s, (or c;=s,). Then:

wiywy in (S f si<ysinS.

wi=, Wy i (Shee Uf s1=,5inS.
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So, the <, -order and the D-relation are determined by the center of any normal
form representation of the elements of (S),., (whereby one can even ignore whether
the center belongs to S or S).

Proof. From Fact 2.24 we know that any element of (8);eg is D-equivalent to its
center (in any normal form representation); also §=, s. Moreover, by Corollary
2.28, two elements of (S),,, are not D-equivalent if their centers are not D-equiva-
lent (for the D-order of S). The fact then follows. Ul

The L, R, and H orders

The expression of the L, R, and H orders of (S),, in terms of normal forms can
only be given by using the coding of normal forms. We know (see Fact 2.5) that
formally different normal forms may represent the same element of (S).,. The
coding transforms such normal forms into each other, and conversely, if two
normal forms represent the same element of (S),., they can be coded into each
other. This coding is described in the Appendix (see the proof of Fact A.1.2}), and
it is also shown how unique representatives for all those normal forms representing
the same element of (S),, can be found. The unique representatives (called ‘coded
normal forms’) are described in (A.1.1); their uniqueness was used in obtaining
Lemma 2.26, and the lengthy proof of uniqueness occupies part A2 of the
Appendix.

Recall that (S),., is a homomorphic image of the free product of S and its
reverse S, with a zero added.

Definition. Let x,, x, be elements of the free product A(*) B of two semigroups A
and B. Then x, is a right subsegment of x; iff x; =x, or (Iy€ A(¥) B) x, = yx,. (For
example: if x,=ab,a,b,a;, then x; =ab,a; is a right subsegment of x; if a;=a or
if ay=a’a for some a’'e A.)

Similarly, one defines left subsegments.

2.35. Fact. Let wy=L,c,R, and wy=L,c, R, be elements of (S),.,, represented by
coded normal forms (L, R,c respectively denote the left side, the right side, the
center). Then wyz,w, in (S)e Iff c\R, is a right subsegment of c¢,R, (when
ciR,, ¢, R, are considered as words belonging to the free product of S and §).

Equivalently: Let w =Lc,R,, w,=L,c;R, be representations by normal forms
(not necessarily coded). Then wy=, w, in (S),, iff c\R, can be transformed by the
coding producedure into c,R{ which is a right subsegment of c, R, (as words in the
free product of S and S).

The dual statement describes the R-order of (S),, in terms of left subsegments.

The H-order is obtained by combining the L and the R-order.

In particular we have (for coded normal forms):

w=,w, iff Ri=R,andc/=,c,(inS or?l),
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wy=,wy Iff Ly=Ljandci=yc, (in S or 5),

wi=,w, iff Li=L,, Ri=R, and ¢;=,c, (in S or S).

Proof. We only consider =, (the other cases are similar).

The second formulation (not using coded normal forms) is easily seen to be
equivalent to the formulation using coded normal forms. We know (see the proof
of Fact 2.24) tkat w;=,c|R| and w,=,C,R; in (§),,- Also, if wy, w, are coded
normal forms, then ¢, R, and ¢, R, will be coded normal forms. Now, c;R, 2, R,
iff ¢;Ry=c,R; or (Fize(S)ey) Uc\ R, =, R,. After reducing, uc,R; will be repre-
sented by a normal form

the part R, of the normal form is in coded form already. If we completely code this
normal form representing uc,R,, we will replace xc, by a representative of an L or
R-class of S: if c; € S, then xc, (¢ S) will be replaced by an L-equivalent zxc, (see
ttie coding procedure in A.1.2); if ¢, =5,€ S and x=y € §, then s, y will be replaced
by an R-equivalent element s5,yz (s0 now xc, is replaced by Zxc;). It could also
happen that ¢, belongs to the center of uc R;; in that case no coding of ¢, is
necessary. After the coding is done, uc;R, will still look like

uc, Ry = <j“D

Since this is equal to
cyRy =

wr: conclude (by uniqueness of coded normal forms) that ¢, R, is a rigtt subsegment
of C’sz.

The converse (if ¢, R; is a right subsegment of c,R,, then ¢;R; =, c;R;) is im-
mediate from the definition of the L-order. [J]

An important consequence is:

2.36. Propeosition. If S is unambiguous except at zero (which we assumed all along),
then (S),., is unambiguous except at zero.

Proof. This follows easiiy from the expression of the L and R order of (S),, just
given. O
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2.7.3. A variation of the construction (S),.,: New inverses for non-regular elements

only
In the construction (S),., we int oduced the element §, which will be a rcgular in-
verse of s, no :autter whether s is already regular (and has aiready inverses in S) or
not.

We now give = variation of the construction, and this time we introduce § only
if s is non-regujar (Remark. Even in this case we might still indirectly introduce new

inverses for r\oninr elements s, namelv inverses of the form atn
ARAWALILD Wy RiCARRANAY (ll\v lullll L’l" U‘rb ’

Let § be a semigroup that is unambiguous (or unambiguous except at zero). Let
N be the set of non-regular elements of S, and let N={fi|ne N} be a set that is
disjoint from S. Let 0 be an additional element that belongs neither to S nor N.

We define (S),., v to be the semigroup presented by the generators SUNU {0}
and the following relations:
(1) sy5,=5; if g-5,=5;in8S

(where - denotes the multiplication of S).

(2) AA,=0 if n;,n,eN.
(3) 0is a zero {i.e. 0s=50=07=n0=0).
(4) Asia,=0 if ny<;5>,nm,, and n;,n,eN, ses.
(5)(A) niin=n if neN,

(B) for every ny,n,eN, se8S with nj=,s=,n, or n;<,5=, n,:

7i,sA, = usv, where u,ve€ S are such that n, =sv, n,=us.

6)L) si=0 ifsz,n

(R) is=0 ifsZ,n (seS,neN).

Comments on the relations. The relations for (§),, » are similar to those for (§),,.
The differences come from the fact that we want to avoid elements § where s is regu-
lar in S. This directly explains relation (2): if n,, n, are non-regular, it could happen
that n,n, is regular; hence we must not set 7, Ay=nyn,. Even if nyn; € N we define
A, ,=0 (otherwise the following could happen. suppoae Ny, Ny, N3, N3N0, N3NNEN,
but nyn,¢ N; then 7, =0, so A AA3=0; but also A AA;=nnAz=nynyn).
Relation (4) can be explained similarly.

Relation (5B) (together with the other relations) will enable us to represent
elements of (S);eg » by normal forms, just like for (S),,- Intuitively we would want

7S, = SUSUS = D55 = DST = USV;

this computation is not allowed in (S),, n, s0 (5B) simply postulates the result.
Notice also that usv e N under the given conditions: if n,=,s, then un,=; us
(= ny); but un; =usv, so usv=, n, (€ N). Similarly, if n,=, s, then usv=, n, and,
of course, nonregularity is preserved under =, and =

As for (S),,, we can code normal forms of (S)eg v t0 representatives (in L and
R-classes; see the Appendix). Indeed the following property of (S),,, also holds for

(S )reg, N
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2.37. Fact. If neN end an=yn, then ant- gn-:;z—i- n (for any teS such that
nteN). Dually: if nB=, n, then nf-thf3=n- tn.

Proof.
ant-an=qant- enfin=qnt- an- xann where xan=n, n=,an
=xoni-n by (5B), since ant<; an=,xan.

The proof of the second statement is similar (dual). O

As in the case of (S),, (see Appendix) one can show that coded normal forms
are unique in (S)e, N-

In fact all the properties of (S),., that are summarized in Theorem 2.23 hold for
(S)reg. N-

All the proofs are similar. Concerning the regularity of (S), y: if 75,7,
SkAySy .1 is a normal form representing an element of (S),, 5 one can check
that the following word represents a regular inverse for that element: 8§, 7S ---
ny$,n 5, where §;=3; if 5;€ N and §; = any regular inverse of s; in S, if s; is regular
in S.

Appendix
Unique representation of elements of (S),., by coded normal forms
Al. Coded normal forms

We saw (in Fact 2.2) that every element of (S)., can ve represented by 0 or by
a word of (SUS)* in normal form. We also saw (in Fact 2.5) that this represen-
tative is not necessarily unique; in this section we shall use Fact 2.5 to code the
normai fornus, and in Section A2 we shall show that these coded normal forms are
unique.

Recall Fact 2.5, where we proved:

if as=,s, then as-as=3s,

if sb=,5s, then sb-sbh=ss.

Let / (resp. r) be a representative of the L-class (resp. R-class) of s; then by Fact
2.5: 35s=I-/ and s§=r-F. This leads to the following definition:

A.1.1. Definition (coded normal form). Assume that for every L (resp. R) -class of
S a representative has been chosen. This set of representatives is kept fixed in the
sequel.

A coded normal form is either 0 or a normal form in (SUS)* of one of the
foliowing two kinds (a) or (b):

(a) (center in S): (r) iy L yCiF by Fuo i (1)

with (n>,) >4 1> h> 4>l 1 Z50Se i<z <glio1<eTn-1 (<p )
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(Again, as in Fact 2.2, the fact that r; and /, are in parentheses indicates that these
elements may or may not be present.)

(b) (center in S): (r) hiryy o+ r il sy o by 1P 1)
with (1< ) 4> 412>, >y >0, <y b 1<y <y by <,y (<4 )

with the supplementary condition that r,r,,...,r,_, are among the fixed represen-
tatives of the R-classes of S, and [, 1,, ...,1, are among the fixed representatives of
the L-classes of S. No new condition is put on ¢ (€ S).

A.1.2. Fact. Assume fixed representatives of the L and R-classes of S have been
chosen. Every element of (S)., can be represented by a coded norial form.

Proof. We show thac every normal form is equivalent to a :oded normal form --
by induction on the lengths of the sides (left, resp. right of the center) of the given
normal forms. The two sides are dealt with independently.

First, norinal forms of length 0 or 1 are already coded (since their sides are
empty).

Coding of the right side: suppose the following normal form is given:

X=81ty b Sl Sp1by - 1Sns

let s,=,/, (representative of L-class); so s,=ul, (ueS'); also 1, ,<,s,, so
ty_1=8.b,=ul,b, (for some b,eS'). Hence

x=Sily - e 1Sl Sy ulyby - ul,
=S$qfy o gy Sl Sy 1By - ulul,
=sily Loy Skli Sa—1bplyly (by Fact 2.5(a))
=Snf_1"'t_k-lskt—k"'anm’n-

Thus, the right-most component of the right side has been coded.

Remark 1. The result does not depend on the choice of  and b, such that
s,=ul, and t,_;=5,b,. Indeed, u is eliminated in the result, and if
t,_,=8,b,=s,b, then (letting /,=ds,=,5s,) we have b, =ds,b,=ds,b,=1,b,.

Remark 2. The result is again a normal form, i.e., s, ;<,/0,<./,. In-
deed t,_,=,1,b, (since s,=,l,=s,b,=,0,b,, and t,_1=5,b,), 50 §;_ <, Ipb,

=y tn—l)-

Also I,b,<,1,, and l,b,%,!,, otherwise (da)/,b,a=1,, which would imply
ul b,a=ul,, hence (since s, =ul,): s,b,a =s,, hence (since s,bp=1,_1): t, 1A =Sp;
this however contradicts ¢, _,<; 5,. (End of Remark 2.)

The same procedure can be continued:

X=S!?1 Z'\u iskt-k E‘-n—ZSn— linbn[n

=Slt_l t_k——lskik t-n—Z' aplybulpbply,
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where s,_,=a,l, b, for a,e S (since s,_;<y1,b,);
SRR N L Rt TPy M MUY SESULY AR

where r,_; is the representative of the R-class of I,b,: r,_=41,b,, r,_v=1,b,
for veS'; etc.

=syfy o G Sl oy @aly 1Tyl (by Fact 2.5(b)).

We can again observe (as in the above Remarks 1 and 2) that the result does not
depend on the choice of v and a, (but only on s,_, and /,-b,), since v is
eliminated, and if s,_;=4a,/,b,=a,l,b, then, (letting r,_;=0,b,h=,1.b,) we

"""""" had BiEabt ol N | -nTn= "n a~a TTTTERyY O ATTEEETTTE - AT A
have a,r,_,=a,l,byh=ayl,bh=a,r,_,.

And, the result is a normal form, i.e., 1, ,<z@lp_ 1 <yTh-1<yly. In-
deed s,_,=;a,r,_, (since I,b,=4r,_ ,=a,,1 b,=;a,r,_,, and s,_,=a,l,b,);
hence 1,_,<,a,r,_1 (=4S,-1)- Also a,r,_;<,r,_,, and a,r,_,#,r,_,; other-
wise (dy)ya,r,_,=r,_y, which would imply ya,r,_v=r,_ v hence (since
o=, ya,,l b,=1,b,; thus (since a,l,b,=5,_,): ys,_1=I,b, — which con-
tradicts s,_, <, I, b, established in Remark 2. Finally r,_,<, 1, since r,_;=41,b,
and /,b,<,; 1, (establlshed in Remark 2).

Continuing inductively, we code the whole right side of the normal form. In the
same way, the left side is coded.

Also, the result does not depend on which side was coded first.

if the center of the normal form is in S the same proof applies.

This proves Fact Al.2.

Remark. The above coding of normai forms is probably related to the ‘Zeiger
coding’ {see [4]).

A2. Uniqueness of coded normal forms

Proposition. Every element of (S),, can be represented by one and only one coded
normal form { for a given choice of representatives of the L and R-classes of S).
(Remark. We still assume S is unambiguous.)

That every element of (S),., can be represented by at least one coded normal
form was proved in A.1 — always keeping a fixed set of representatives of the L and
R-classes of S.

To show uniqueness we let (S),, act on a certain set of states (transformation
semigroup) and show that elements which are represented by different coded normal
forms act differently on those states. More precisely: ‘

Choose as state set O the set of all coded normal forms (including 0), together |
with an identity element. Let the eiements uf SUS act in the way corresponding to
the multiplication in (S),, (this will be described precisely). Then, take the !

semigroup (SUSU{0})rp-o, generated in F(Q—Q) by the transformations
suSuio}. ’
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We show that (SUSU{0})r satisfies all the axiom. (1)~(6) (this will be very
tedious) and hence (by Fact 2.13) is a homomorphic image of (S),,. Thus we con-
sider (§),g as acting on Q (in a not necessarily faithful way).

Finally we show that elements of (S),,, which are represented by different coded
normal forms act differently on Q. This shows that (S),, acts faithfully on Q, and
that different coded normal forms represent different elements of (S),, — which
proves uniqueness of coded normal forms.

Remark. Lemma 2.26, which was used for Theorem 2.23, is an immediate corollary
of the above proposition (and of the way a normal form is transformed into a coded
normal form — see Fact A.1.2).

(a) States and action

States. As just mentioned, we choose as state set Q the set of all coded normal forms
(including the zero), together with a new element I (which will play the role of an
identity or a start state). We still use a fixed set of representatives of L and R-classes
of S.

Graphical representation of the states: We still use the ‘arrow picture’ of Fact 2.2,
but for notational reasons we draw the arrows horizontally, starting at the bottom.
Upward pointing arrows now point to the right (forward direction) (see Section 2.2),
downward pointing arrows now point to the left (backward direction). So states
have the form

(A2.a.1)

/

/= = = / \\
N // e~ N
|

;, - - - -

I ~|<-- (center in S) or J
- | ’ l<—(Ce:mer in S)
\ ¢t [

\\ R/ 7
\ / \ s
| / T
_.v__>| ' ‘

T
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The reason why this notation is more convenient will appear when we define and
study the action on the states.

(A2.a.2) A more explicit notation for states which we will use is

s
’/’ Vé akak—l ...alxobl ...bk @ak—l ...alxobl ...bk

;.,@,M @
;.-@ a, ”'alxﬂbl -"bkbk-i-l

CMa-x b C\

"
a.v..ITe
4% 118,
1

a
*
-
‘
-
o
-
2
h
-=
-
S
o
-:"
s

=

representing the ccded normal form (with center € S):

‘I:rmrm "’Tn+lcnfn o IZfZIIFIIO

with
I > >4 <Up 1230, Sy <y <y h<y <L, <sn<aly
H—J}
not both=
and with

Iosz, r1=xobl, 1,=a1xobl,...,
1 n-1 1 n

looi=11 @i xo- 11 b, ’n=Hai'xo'Hbia cn=1[la-x-I1b.
n-1 1 n-1

Since we will define the actions on the right, only the right side of the state (coded
normal form) will have to be written down in detail.

Action on the states. Ve shall define the action on Q of the elements se S, 5eSand
0, and then take the semigroup generated by these actions in F(Q —Q). The action |
of s (resp. 5,0) is denoted by (s) (resp. (3), (0)). f
First, ;
VgeQ: q-({0)=0.
And,
VseS: I-(s)=s, I-(®)=5 (I is the identity).

A BT AL S A S5R e ke



Arbitrary vs. regular semigroups 97

In general: if ¢ is any coaed normal form, then g - (s) = ((gs) norm) code, where
(gs) norm denotes a particular normal form (described below) corresponding to the
element gse (S),,; and ((gs) norm) code denotes the coded normal form obtained
from the normal form (gs) norm by using the procedure of A.1.2.

Remark. If g=0, then g(s)=0.

Similarly define q - (3) = ((g%) norm) code.

Ncrmalization. The normalization gs—(gs) norm and g5—(g3) norm will now be
described more explicitly (where s€ S, g is a (coded) normal form).

Let g=rply, - rpsilys 1€ bR [\ Filpe Q be a coded normal form (with
center € S for example; the case where center € S is dual) with

10=x0, r1=x0b1, 1|=a|x0b,,...,

Then
(QS) norm:rmlm"'lrwlcnfn o Ty 1@y ot A1 XpS

if re <@ apxps, and re= a4,y A XgS, - T 25 XS,

arrow pictures of these conditions:

] 1
(A2.2.3)  f ! _ ! -1
k+1 H a;Xp,s Ty H Qi Xps ooy f:l X0

k k-1

‘*

1
(qs)norm =Fme--'Tn+,an~--a1x0S if 'n=, H a;xpS, ..., N =XyS,
n-1

(gs) norm=0 otherwise.
Hence (gs) form is again a normal form, whose left side is coded but whose right
side is not necessarily in coded forr.
@y norm=rpl, -1, \CiFp- W S if [y, s,
(@8) norm =rply -+ Ty \CpFo e+ I SBy - by (Where n—1zkz1)
if [, <, sby-- by

and l,_ =, sb - by_r,.... [ =, sby, lh=, s,
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arrow picture of rhese conditions:

4 |

- b
lk b‘ "'bk . lk-l bl '“bk-—l seeny Iln l» IOUS-

5 §

s T ... T
) 18UT TS =’m’rﬂ""n+l‘n+lcn5b!"'bn

if (as before) I,_ =4 8b) - b,_1,....L|=e5b,lp=4S,
and either ¢, <, sby>+-b, or I, 1 >;3¢,<,5b,--- b,,

(gsynorm =r, 1, - ry \fsb, - b,

if ln-lZ.’bel e bnﬁl,...,IIZySbl,IQZ_{S,
and /,, ,=4¢,=45b, - b, (With uc,=sb,--- b,),
(g3Ynorm =0 otherwise.

The case wltere the center of g is in S is dual to the one described.

Remark. 1§ we consider s,q,(gs) norm,gs as elements of (S),,, then it follows
from the above description that gs=(gs) norm in (S),,.

Graphical representation of the actions (if result #0, and if n>%, i.e. a;--- g, x5
is not the center of the resulting state) is shown in Fig. S.

Coding of the right side of a normal form. We mentioned that if g is a coded normal
form, then (gs) norm and (g3) norm are again normal forms, whose left side is coded
but whose right side is usually not in coded form. So, in order to obtain g- (s) and
q- (3) we still have to describe explicitly how (gs) norm and (g3) norm are coded.
(A2.a.4) Let g be a normal form whose left side is coded. So

G= Ty Ty 1\ Xn P o+ X2 921 P10
with
Tm> s lm> 5 >l 1 Z g X0 Sy Vu<g < X<y Y2<a X1 < Y1<4 "

and /7y, ..., 415/, + 1 are among the chosen representatives of L (resp. 1R) -classes
of S, and y, =xpb, Xi=a;XgD}s ..., Yo =0p_1 - @1 Xohy -+ bpy Xn=0ay - t\2pby -+ b,

(k.ere we coasider a normal g whose center is i S; the case where 1h: center is
in § is treated dually.} Then (see the coding procedure in A1.2):

— —_

by

&9
(g) code = ayxpb, onob,
code

where xy =, ly (=representative of L-class of xp), and Ay S' is such that Ayxy=i,.
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- -
X
Ixobl
alebl
a1 Xob, b, (@ - ayxps=)
a,a,xob, b, ag - ayxoby - by u
( . §) norm = ]
==\ g -~ MXoby - b by
”~ \ j
”~
Iak—l axoby by =T Tt -
L - - -=-- |
@y ) ayxpby - by
a e aiXoby e beby
ad -
Xo
[x b -
‘—‘|0 l [ (=sbyby - by)
TTT TN
A U‘L_ak_l"'alebl"'bkr
( ak_l"'alebl"'bk 'S—) norm =
L l akak—l"'alxobl"'bk
apay_ "'alebl '"bk —_ - R
o . | - -~ - - =

L -
Fig. §.

Remark. The element Agxph, does not depend on the choice of 44 such that
A.oxo = 10 (Since 'loxobl = IObl)'

Claim 1. X()b] Eg‘lloxObl-

Proof. /y=Ayxy=, xp= (multiplying by b,): Agxob1 =, Xob,.
o

Corollary 1. alxobl@.loxob, holds.

Proof. Obviously Agxph, =loby <, 1p; if we had AgXph, =, |y, then (since Apxp=,Xp
there exists AZ: AfAoXo=X,) we would have A5AoXob, =4 A540X0, thUS Xoby =, Xo —
which contradicts xyb, <3 Xg.
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For the -relation: we have a,xpb <, xpb;, Xob;=4A9Xpb; (by the above
claim). Hence a,x,b,<, A¢%b;. O
The codings can be continued inductively:

on{) = 10

7N\
&)
- .

j /_\u ) 4
a1 xpb101 | (<y)AoXoDi0y =T
1%00121 £)AoX0D101 =Ty

code
é--alxoblbz

(q) code =

where AoXob;=,r, (=the representative of the R-class of A¢xpb,), and g, €S’ is
such that r; =4,x5,0;.

Remark. The element a,xyb,0, does not depend on the choice of ¢, such that
ry = AgXoby0, (Indeed, if r| = Agxob,0, = AgXob,0}, then muitiplying by Ag such that
AbAoXg=Xg: Agry=Xob101=Xob10y, hence a;x3b,0, =a, Xob01)-

Claim 2. xpb; =, xob,0,. (Hence, multiplying by a,: a;xob,=ya,%9b,0,.)

Proof. We have Agxoh,=,r;=AoXob;0,- Multiply to the left by A7 (such that
AEAOJYO =)'.5'10==x0): xob, 5‘;18"1 =xOb|Q1 .

Claim 2. The following strict relations hold:
(~ ¥~ ) j

(=2 x
LTAY Llileg iy g

3 alxoblglrl (=4oxpb101) >
\ 1 Xgbby J

Proof. (a) We obviously have 1gxyb,0, <5 A¢Xp. If we had Agxpbi0,=420Xy, then
(multiplying by A§ such that AJA,x;=xp): xob,0, =, Xo- Hence, by the above claim:
Xgbi =4 xob10=4 Xp; this contradicts the fact that xyb;<jzx,, and proves
ﬁ.gXoblgl <4 ApXp.

(b) To show that a;x,0,0, <4 AgXpb,0;, use Corollary 1": a;xyb; <,A9Xob,, hence
ayxphioy <, Agxyby0y. If we had a, xgb,0, =4 Agx by 0,, multiply by of such that (by
Claim 2) xyb,0,07=xb,: then a;xpby=,Apxyb;, hence (by Claim 1:
Xoby 2=, Agxeby): ayxgb =, xoby, which contradicts the fact that a,xyb <, Xpb,.

)

|

{
]
:
;
i
i
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(c) To show that a;xyb, b, <;a,xb,0, use Claim 2, bty which a,x,b,0,=, a\xpb,;
and it is given that a,xb b, < 3 a,xb,.

This coding procedure can be continued inductively: multipliers 44,4,,...,
Ap-1,01,-.-,0p, are introduced such that
h=4oXy (=4Xp),
ri=AXxobi0y (=4 40%b)),
L=Mhaxbo, (=,a1%b,0)),

ry=Aapxobib0; (=, A1a1xb1by),

(A2.a.5) Ly =Aca v ayXpby by 104 (=ya4_y - ayXpby - by _104-1),
re=2A 1@y ayxohy - by by (S3di_1@Q_y o ayXohy - by _1by),

for 1<k<n, where I, _,, r, are representatives of L (resp. R) -classes (in S); and
Ch=4ay-"* alebl ann-

(A2.a.6) Fact. We have (q) code =

o= AoXy

i /) =l|a|x0b|£'|@}toxob|91
5 o
[ @ g"@ilﬂl-‘foblbzgz=’:

r _
n+l ,n-l—in-lanfl"'alxobl"'bn-lgn—l©

L [,H.[@C,,:ﬂ"':' alebl bngn@'z'n— (L0 alx()bl by lbrxgn =TIy

We have to prove that this is indeed a normal form, i.e., that for l<k<n:

[

. and c,,r,,.

(<) e

For that we shall use the following claims:
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(A2.a.7) Claim (4).
Ay 1Gx_ @y Xgby by _1=pap_ o ayxghy by for 0<k<n.
Claim (g).
Ay @ Xphy o by \brox =g by ey xoby e by by for 0<k=n.

Proof. Induction on k. (For k=1, see Claims 1 and 2 above.)
Claim A. By definition of A,_, (see (A2.a.5)):

Ak 1@y Xo "Dy 10k 1=y Xo o by_ 1@k
and (inductively, assuming Claim o for k--1);
A2 X0 Dy 10k 1=40 2~ X by,
hence, there exists of _, €S such that
Az Xo- by _ 10k 10K\ =ag_2"Xg* - by,
Now multiply the first line on the righi by of_,, and using the last line we obtain
Ap sy Xo by Sy Xp- by .

This proves Claim (1).
Claim (p). By the definition (A2.a.5) of g;;

Ap_ 1@k X brog=Ay_1a5_y - Xo- by _y.
And (by Claim A for k— 1, which has just been proved):

Ap 1@y Xo- by =y ap_y X by_y,
hence
* 1 |
(A 1€8 ) A 1Ak 1Gp_ X by_y=@p_ X+ by_y.

Multipiying the first line to the left by A}_, and using the last line:
gy @y Xohy o bpOp=4a;_y - X - by

This proves Claim (). O

Proof that Ikrk. By Claim (A):
Te=Ag 1 Q_y - @y Xoby - by _\bror=gay_y - ayxph, --- byoy,

moreover [, =A,a,a_,--a\xgh, -~ byoy. Hence l,<,r,. We still must show

Ap@ply_y - Xo - Br@u =gy _ |+ Xo br0g.

Multiplving on the right by of satisfying a;_,--- - bowof=ay_ - - by (0F ex-
ists, since by Claim (@), a;_;--- -~ bror=gqap_ -+ b,) we obtain

Aelply g Xo - p=yay_y - Xo+ by
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And by Claim A (for k):
A'kak s Xt bkE.‘{ak'"xO .ns bk'
Combining the last two lines: p

AQQy_ )Xo bkE.&"ak—l e Xttt bk'

This however contradicts the fact that aya; _; - xp-- by <, @y _ - X+~ by (which
is given by the form of g).

Proof that rklk_ .. By Claim (A):

Fe=Ap1Gx-yXo b 1bk0x (=, @y Xp-= D 15400
Moreover

beo1=Ag @y "X by 10k (Zp8_y - Xg by _ 10k BY Claim 2).
By Claim o (for k—1) there exists gf_; such that

*
Ay 1 Xg by 10k 10k 1 =2 Xp b,y
Hence

*
Fe=Ag_ 1@ _1Qx_2" Xo " D10k - 10k - 1Dk Ok = 5 k1

We must still show r,#;/,_,. Suppose we had r,=,/,_,, i.e.,

Ap_ gy X D 1@k = A 1@y Xo - by _104 1
fl; (by Claim (), for k) i, (by Claim (o), for k- 1)
hence
A @1 X bryby =5 Ag @y Xpe by

By Claim (1) (for k1) there exists Ax_, such that
A tAk— 1@y Xg by =ap_y - Xo by
Hence (multiplying by A}_,):
Ay X by by =g @y XKoo Doy
This however contradicts the strict <j; given by the form of g. U
This proves that (q) code has indeed the form indicated in Fact (A2.a.6).
We can write (g) code in terms of ““@’s and b’s” (cf. notation of (A2.a.2)) as
follows:
(A2.a.7") By Claim A (resp. @) there exist:Af_ (resp. o) such that

for 0<k<n: Az_l/lk_lak_l "'Xo"'bk_l"—ak_‘ =+ Xp bkhl,
and
for O<k=n: @y - Xo+ bx_\byOLOK=8—y %0 b 1D
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Then denote xF=2Ao%y, bf=b0), and af_ =4, 1ax_1Af 5 for 0<k<n, a7=
a,A%_,; and b} =0f_ b0, for 0<k=n. Then (as is easy to check):

(A2.a.8) x3=l, n=xbf (=Aixehio);

lk-l"—'a:-l ai“xS‘b}"-" bZ‘-l (=Ak-lak*xﬂ-zlk—zak—zlz-a o)
for O<k<n;

re=ag i arxgbt - b bi for 0<k=n;
cp=ay---ayxybf - by.

Hence we have (g) code =

I

atxsbr(<)xb}
&) )
£

Im<>l>“‘

Remark. Compare this with the form

pare this with the form given in

Coding commutes with the actions. We shall now prove an important technical
femma.

(A2.a.9) Lemma (‘Coding commutes with actions’). Let q be a normal form whose
lefi side is in coded form, and let s€ S, 5€8. Then

(gs) norm code = [{{q) code) s] norm code,

or equivaiently:
q- (s)=((q) code)- (s)

(if we define g - (s) =(gs) norm code); and (g3) norm code = [{(q) code) 5] norm code,
i.e., g- (3 ={(g) code)- (3)).
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Equivalently, the following diagrams commute:

q—-'—“—'q (5) =((g) code) - (s) q——'-*q (3) =((q) code) - (3)

YAy,

(g) code (q) code

Proof. We first consider the case of gs. We shall compute (gs)norm and
[(g) code) s} norm, and then show that a further coding makes both egnal.

The normal form (gs) norm is described in (A2.a.3) — while [(g) code s] norm is
obtained by first replacing each g; and b, (and x,) in ¢ by ¢, resp. b} and x{ (as
described in (A2.a.8)), and then applying definition (A2.a.3) to this new form. Thus
we need the following claim:

Claim
xXys<,;x0b, © xp5<,Xxb,

* x, .k % *. k% * *
gy A1 XSS5y Ay Xg by b by &
Q1A XoS= 40 "‘alebl"'b;_]bk, fOr 0<k=n,
* *.. % * X, kg & *
ag_y - ayXgS> a5y ayXo by - by &

Qp_ g @XgS> 3,y @y Xoby -+~ by, for 0<k=n.

Proof of Clzim. Since

re=ap_ - arxgby - bf=2A_1a,_ - ayxph, - b0y
(by A2.a.5), and since (by Claim (o) of A2.a.7):

Ay @y Xoby - bk =48y - @ XDy - by,
we have (multiplying the last relation on the left by 4, _,):

Fe=yAx 1@ g @ Xoby - by

So

af_y - afxys<  af - afxghy - by @

% %%

Ae_y  AUXGSS 4 Ap (g -y D XoDy - Dy,
and

Ay aixXgs> yaf_ - ayxghy o by e

af_ o atxys> g Ap_ @y ayxpby - by, for 0<k=n.
Moreover

* x . ) .
aF_ ) apxEs=Ag @Ak - 228k Ak -3 AidAgAoXeS

=A@k 12 A1 XpS.
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Thus
af_y o aixgSS,a8_y - aixght - b &
Ap—1@_ 1@ XSS g A1y - @1 X by -+ by

the last relation implies (by multiplying on the left by Af_,):
Q| AyXpS< Qg1 Ay Xpby -+ by.

Also, this last relation implies (by multiplying now on the left by A,_,):
A 1Qy_ QXSS g A 1@y - @y Xoby -+ by

Thus

ag_y-ayxgS<gzap_y--afxgbht---bp

Ay g @ XgSS 30—y Ay Xoby -+~ by,

which is half of what was to be proved.
We still have to prove

af .y afxgs> af_y - atxgbl - by
Ay | AXgS> 30y -+ A1 Xoby -+ by

This will foilow easily from

* 3% * kKK *
ak-']"'alxﬂszziak—]"'a]x()bl “‘bk &

A |- A XSZ 40—y -+ @y Xoby -+ by,

H
¢

I . - axyS
lm... "'ak"'alx()bl"'bkbk+l

(gsynorm=
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if and only if ((q) code- s) norm=

Fon ag - afxys

1m... ---a,;"u-a;’x(’,"b;"mb;_,b,:‘

lI

a:...x(;‘... b:

Here we assume n>k (i.e. a; --- a;x,5 is not the center); the case n=k is identical.

Finally, to prove Lemma (A2.a.9) we apply code to both forms. We have
ay - @y xpS=gag--arxys (=Aga;--- ay,xp5). [This holds because A,a, - a;x,5<,
a; - axps and because AfA a; - a,xgs=AfA a, - ayxyb, --- bu for some ueS!'
(since ay_ ;- a1 XpS<g @y_, a1 Xgb -+- by by (A2.a.3)); =a;---a;xpb; -+ b u (by
the definition of A%, (A2.a.7°)); =a, - a,xea; hence a, -+ a,Xo5<, Ay - a;Xp8.}
(f n=k, then a, --- a;xys=ay --- af x§'s.) Since aff --- afx3s=, a, --- a, xys, both have
the same L-class representative /;. Let 4; be such that [; =4;A,a; - a,x,s, and let
Ay=ArAg; so Ly =2A3a; -+ a;xys. Hence (gs) norm code =

T I
Im ...: E"@Azak“'alxﬂbl'“bkbk+1

code
BRI [
and ((gcode) s) norm code =
_ , ‘ -
b - (<) - afxgbt - bEbE,
5 code
R [
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(by the description of the coding in (A2.a.4)). Moreover

Agag---ayxoby - by =Apdgap - axoby by, (since Ax=2;A),
and

Ageg - afxtht - B, =Ax- Aag - ayxoby - by 104y (b (A2.2.8)).
But

AkAi@g - @Xoby - by 1=y A Agay - @ Xoby - by s Qi

(by Claim g, (A2.a.7)); hence, continuing the coding, these two elements have the
same R-class representative r;, (.

Let i,y be such that i, =2;A,a; - @%by -+ by, 104410k -+ (and let of, ;=
Ok + 19k +1)- Hence (gs) norm code =

I
&)

B [ ’
A1 X Dy 10k 41 r,H,
,

code

and ((g code) s) norm code =

I |

% * * ’ N ’
[ RELD /RLLY et A "k+1

,

code
e Zg cn*-..
L - ) - -
where " ,
- LR ] = LR ses 1 " - 4
Bpsy X bi1@kri =gy 1+ X0 Die+ 10k +1€k +1 (SINCE Q4 4 1 =044 10k +1)»
and

A yq e Xg o B 10k 417 A1y 4 o Xorr By 1@kt Gk a1
and by Claim {(A2.a.7), these two are L-equivalent (thus will be coded to the same
L-representative).

Continuing the coding inductively (which is easy now) we obtain Lemma (A2.a.9)
for the case gs (the induction works out in the end, for ¢, and ¢, since A,=1e8").
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The case of g5 is very similar, and the case where the center of g is in S is dual.
This proves (A2.a.9). [

We are now ready to verify that all the Axioms (1)-(6) hold for (SUSU {0k

(b) Verification of the axioms (for (SUSU {0})£))

Axioms (3) and (4) (which state that (0) acts like a zero) hold trivially since Vg e Q:
q-(0)=0.

Axiom (5). We first show that for all ge Q, s€S: g(s)=¢q(s): (3)- (5). If g-(5)=0,
then this certainly holds. So assume g- (s)#0. Suppose g and (gs) norm have the
form indicated in (A2.a.3); so

a; * XpS

Ay 4 1 Qg =+ Xo "+ bk+l@ak"'x0"'bk+l

q-(s)= code

(assuming & < n; the reasoning is similar if a;_, - a;x5 is the new center).
Next, let us compute g(s5)(5)(s): By Lemma (A2.a.9),

g(s)(3)(s) = ((gs) norm - §) norm - s) norm code

(coding done only once, at the end).
If 1) a,---ayxys<ys, or: if (2) k=n (i.e., a,-- a,x,s is the center of (gs) norm)
and /,,,=,a, - a;xys, then

e 4 -
Ay - 1 XpS S

-5 | norm code

".ak."x()”'bkbk+l

OOSD=1 (. -]

in case (1),

-8 | norm code

) ...an...alxos@s in case (2)
\_

- L = ~

In both cases

(((gs) norm 5) norm s) norm = (gs) norm
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(to compute (((gs) norm 5) norm ) norm from the above ((gs) norm 3) norm, use
(A2.a.3), where x, is dropped, & is replaced by 1, 7, by §, and /; by a; -+~ ;x5 etc.).
Hence g(s) = g{(s)(3)(s) in these cases.

If () ax--axgs=ys, n>k, then let b, be such that a; .- axosby, ;=
gy Xphy - beby .y (Since  ay - ayxpS>4ap e ayxpby -+ by, ,);  then, since
A4 10X " Bp s 1 <o @geo+Xo--- by .y we have ay (@ XoS)bg 4 1 <o (@ XgS)bp i 1.
Therefore by (A2.a.3):

((gs) norm3) norm - s=

ay -+ XS

= ak“(ak---xos)b;H(ak---xos)b;(“ code- (3)- (s)

- ) oA -
ak+l(ak"'xos)bk+15bk+l
= : : -5 | norm code.

L. L - -

Moreover sby, | <, s (since if sb; . ;=4 5, then a; -+ x,5b} , | =44, -+ XS which con-
tradicts the fact that a, --- xysb; . | <, -+ x,5). Hence

a(s)(3)(s) = (gs) norm § norm s norm code

p— -

§

= A4 (@ -+ X8)b 4 sb;(+ 1 | code

|

s ]
g
o
= @y 1 A Xoby - bkbkn&";uz-x code.
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However, by Fact 2.5, or by the proof of Fact (Al.2), this is equal to

i - a1 XpS

L4
Ay iy AyXpby - bk+lak @ XoSby | | code

L v J

since a;---a;xos=,s. Hence (since ay - ayxosby,\=ay---a\xoh, -+ byby. 1), we
have g- (s) =g (s)(5)(s).
If @) n=k (i.e. @, a\xys=45), and I, ;=;4a, - a,xys (the case {,,, ;> ,--- was
considered in (2)), then let b, ,, be such that /,, ,=a, - a;xy5b, ..
Claim. sb, . ,=4s.
Proof.
@y Xgs=yS5 = (JueS') ua,xos=s.

Hexce multiplying (/,,, =) @, - @;X5b,, . 1 =3a, - @ Xys on the left by # we obtain
ua, - ayxXgshy, . =g ua, --- a;x,s, which is equivalent to sb,, ;=, 5. This proves the
claim.

Now

q - (5)(3)(s) = (gs) norm code - (5)(s) =

(" : W

|
\dy** @1 XpSbp 41 J
("
= -“@)(s) (by the properties of code),
L sbni S
("
= @ .5)  (by definition of (3)),
- Sb;z+l
(+ ..
= @ code
_ sby. s S
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= code,
’
ap - a1XgShp 1 (=14 |)a’n Ay XS

which is equal to g (s) in this case.

Here we assumed that ¢ has its center in S; the case where the center of g is in
S is treated identically.

This proves that the axiom s=s3s is satisfied.

The axiom 5=23s5 is verified in a similar manner.

Axiom (1). We have to show: (Vge Q) q: (s;)(53)=¢g- (5,52).

It is easy to see that if g(s,)(s,) #0 and g(s, s;) #0, then g - (5,)(5;) =¢q - (5,5;). We
sti"’ have to show: g- (s;)(5;) #0 iff g- (5,5;) #0.

Claim. q- (s,X5;) #0=q- (5,5,) #0.

If g- (5,)(s;)#0, then g- (5)#0, hence by (A2.a.3), there exists # such that for
all j with 0<j<h:

(aj - Ay XpS; Sgaj"' aleb| e bjbj+ s
Ay - @1 XgS) > 5 dp -+ A1 Xoby -+ byby 4.

Remark. Here we assume that g has its center in §, and that 4,k <n. The other

cases are similar.

And, since (g- (s)))(s,) #0, there exists k (= h) such that for all j with h=<j<k:
{aj e dp et GIXOSISZSgaj e dpece a]xObl e b], = bjbj+ 1>
Ay Ay A XS S2> gy Ay Ay Xoby o by o byby .
(Here we use Lemma (A2.a.9).) But, since a;::- @,Xp8,5;=<44; - 41XyS,, the first
conditions (for g- (5,)#0) imply that for all j with 0<j<h:
Gj*- 1 X051\ 5r =3 4" a]xObl o= b_,b_H-l;

therefore g- (s;5,) #0 (and these expressions also show that g- (s,5;) =g (5,)(52)).
Claim. q- (5;5,)#0=¢q- (s))(53) #0. If g- (s;5,)#0, then (by (A2.a.3)): there ex-
ists k such that for all j with 0=j<k:
{aj e XS5y =540 a]XObl e bjbj+ 1s
Ay -+ Ay XSy 52> 7 -+~ Ay Xoby - by by 4.
This implies that (g- (s;))(s,) #0, provided that g- (s;) #0.
To show that g- {s,)#0 we need the existence of a number s (< h) such that for
all j with O0sj<h:
{ ﬂj’ et dy Xph S#aj vee alebl one b.lbl+ 1s
@y A XS >y Ay A Xohy - bpby .
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However, since (Vj,0<j<k):
{aj---a,xoslszsgaj---a,xos,,
aj e a]xo.S'lSzS?gaj"' alebl vee bjbj+|
we have, by unambiguity of the R-order of S:

(V],OSj<k): a;: a1 XSy 2,00 <, ai--- alebl e bjbj_”

Hence, there exists

h=min{j|0<j<k and g;--- a;X05,> ;@ ayxob, -+ b;b; . | }.

Now g- (5;)#0, since for this choice of A we have (V},0j <h):

[aj'" @ XoSy Sy, €y Xoby - b;b;
ap e A1XpS) > 4 dp e @y Xpby - bpby . U

Axiom (2). That q- (5,)(5,) =¢q- (s55;) is proved in a similar way; here we need the
assumption that the L-order of S is unambiguous.

Axiom (6L). We shall show (s5))(5;) #0 iff s, =, s,.
(=) Suppose for some g€ Q, we have g- (5,)(5;) #0. Then q- (s;) is of the form

Ay - A1 XpS)

code,
"'@ak“'alxobl bkbk+]

L Ceen .

and g- (5;)(3,) has one of the following two forms (using Lemma (A2.a.9)):

Case 1:
ak"'alxosn@sz W

g-(5)&)=|: code,
. ...@ak...alxob‘...bk*l

Jif ag e apxs <, s

Case 2:

4
ak+p"'ak+l(ak"'alxosl)bk+lbk+2"'bk+p ]

g (5))5) = =ak+p"'a|«_‘f0b1 by by bk+p52bl,(+!bk+2"' bk+p code
)
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(where b}, , is such that @y -~ a,xpby -+ by by, | =y -+ a1 X81bj 4 | <58 -+ @1 Xp5)), if
’ 7
S2=, Qe A1 XpSys Saby 1 Sy - ayxpS )b 45 -

’ ) ’
vees 82Dk 1Pk a2 Brap- 150y p 1 gy {8k AXoS)Dp 1Dk 2 D ps

£
-
=

Ed 4
N /01 PPULILY. M-I FONSEILY PR (- PREEY % 1Y) I /T S S Jo
(=@rip Tes1di e O Xoby - b 1Dz By p)-

Remark. Here we assume g has its center in S, and that k<n, k+p<n.

ha ~atliae ~ncac ara

The otlier cases are similar.

In Case 1 we have a, --- a,x,5, <, 5,2, and of course @ --- @, xy5, <,5;. Hence, by
unambiguity of the L-order of S: 5, 5,.

In Case 2 we have (see above) s, <, a; -+ 4;X5;, and of course @, -+ a; X5 <, 5y,
hence s5,<, 5.

So we proved that (Fge Q) q- (5,)(5) #0=5Z, 5.

{=) From the definitions

r(s,sz) code if s;<,5,
(s
I ()82 =51+ (5) =3 code  if 5>, 53,

52

L0 if ;%4 5.
Thus (5,)X5,)#0 if 5, %, s,. g

The verification of Axiom (6R) is dual.

This proves that (SUSU{0})r, satisfies all the axioms, and thus is a
homomorphic image of (S),., (following the reasoning given at the beginning of
A2); this also implies that (S),, acts on Q.

We shall show next that elements of (S),., which are represented by different
coded normal forms act differently on Q; this implies that different coded normal
forms represent different elements of (S),, and that the action of (S),,, on Q is
faithful (hence (Q, (S),,) is a transformation semigroup).

(¢} Unigueness

Uniqueness follows from the following fact. Let r,, [, - - I\F,l, be a coded
normal form (with center in S or in §). Then
I (r)Ty) == - UDEo) =yl -+ - hrilp.

(This can be proved easily from the definitions of norm and code.)
Also f-(03=0. This completes the proof. [J]

PR e e
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