ARBITRARY VS. REGULAR SEMIGROUPS*

Jean-Camille BIRGET**
Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA

Communicated by J. Rhudes

Received 1 October 1983
Revised 21 October 1983

Abstract

The notion of regularity for semigroups is studied, and it is shown that an unambiguous semigroup (i.e., whose \forall and ℓ orders are respectively unions of disjoint trees) can be embedded in a regular semigroup with the same subgroups and the same ideal structure (except that a zero is added to the regular semigroup). In a previous paper [1] it was shown that any semigroup is the homomorphic image of an unambiguous semigroup with the same groups and a similar ideal structure.

Together these two papers thus prove that an arbitrary semigroup divides a regular semigroup with a similar structure.

The resulting regular semigroup is finite (resp. torsion, or bounded torsion) if the given semigroup has that property.

Contents

I. Introduction 58
1.1. Meaning of regularity 58
1.2. Examples of elementary embeddings 59
1.3. Counterexamples 62
2. Embedding an Unambiguous Semigroup in a Regular Semigroup 66
2.1. Results from [1] 66
2.2. The construction ($S)_{\text {reg }}$ 67
2.3. Normal form of elements of $(S)_{\text {reg }}$ and regularity 68
2.4. Relations and their inverses 73
2.5. Properties of $(S)_{\text {reg }}$ and of the embedding $S \leq(S)_{\text {reg }}$ 76
2.6. Preservation of (bounded) torsion. Length of products 81
2.7. Further properties, and variations of the construction $(S)_{\text {reg }}$ 88
Appendix. 92
A1. Coded normal forms 92
A2. Uniqueness of coded normal forms 94

[^0](a) States and action 95
(b) Verification of the axioms 109
(c) Uniqueness 114
References 115

1. Introduction

Delinition. An element s of a semigroup S is regular iff there exists $x \in S$ such that $s=s x s$.

The semigroup S is said to be regular iff every element of S is regular. For undefined terms, see [5] and [7].

1.1. Meaning of regularity

The following intuitive interpretation of regularity of an element s was helpful in the coustructions that will be given later.

Here we think of the semigroup S as a set of transformations acting on a set of states Q.

The transformation s is regular iff " s can be repeated, after it was applied a first time, and reproduces the same results." This is seen by interpreting the regularity property as follows:

In short we say that s is regular iff s is "repeatable with the same results."
We shall prove a theorem, which reduces arbitrary semigroups to regular ones.
Semigroup expansions (treated in [1] and [2]) play a fundamental role; however this paper depends on these papers orly through the existence of expansions having certain propertes, and the reasoning refers only to those properties (- not to how they were obtained).

In particular we shall prove:
(a) For every semigroup S there ex sts a regular semigroup S_{R} such t 1at $S<S_{\mathrm{R}}$ (S divides S_{R}), and S_{R} has the same subgroups as S.
(b) A more precise statement is: For every semigroup S there exists a semigroup \bar{S}, a surmorphism $\varphi: \bar{S} \rightarrow S$, and a semigroup S_{R} such that: (i) $\bar{S} \leq S_{\mathrm{R}}$; (ii) S_{R} is regular; (iii) φ is injective when restricted to subgroups of \bar{S}; every non-trivial subgroup of S_{R} is D-equivalent to an isomorphic subgroup of \bar{S}.

Remarks. (1) Statement (a) follows, for finite semigroups, from the Allen-Rhodes synthesi: theorem (see [9] and [3]) - as was observed by John Rhodes.
(2) See Section 2.5 for the complete statement of the theorem.
(3) The whole theorem grew out of an attempt to find a simpler proof of the Allen-Rhodes synthesis theorem -- which combines the Krohn-Rhodes and the Rees theorems (for finite semigroups). A relatively simple proof existed for regular finite semigroups (due to Stuart Margolis, J. Rhodes and D. Allen, Jr.) - and together with the " $S<S_{\mathrm{R}}$ "-theorem we obtain a new proof of the synthesis theorem. Also, the " $S<S_{\mathrm{R}}$ "'theorem extends the idea of a synthesis between the theory of regular semigroups and the global theory of arbitrary semigroups.

1.2. Examples of elementary embeddings of arbitrary semigroups in regular ones

1.2.1. Right regular representation

Let S be a semigroup and S^{1} the monoid generated by S (i.e., $S^{1}=S$ if S is a monoid; otherwise, $S^{1}=S \cup\{1\}$ where 1 is a new element multiplied as $1 \cdot 1=1$, $1 x=x 1=x, \forall x \in S)$. Consider the semigroup $F\left(S^{1} \rightarrow S^{1}\right)$ of all functions from S^{1} into S^{1}, under composition.
$F\left(S^{1} \rightarrow S^{1}\right)$ is regular and $S \leq F\left(S^{1} \rightarrow S^{1}\right)$ (using the embedding $s \hookrightarrow f_{S}$ where ($\left.\forall x \in S^{1}\right):(x) f_{s}=x s$ - see [5], [7] or [8, part II] for a more complete description).

The drawback of this embedding is that it does not preserve many properties of S; in fact $F\left(S^{1} \rightarrow S^{1}\right)$ depends on S only by the cardinality of S^{1}.

1.2.2. Relations and their inverses

If Q is a set, define $B(Q)$ to be the semigroup of all binary relations on Q, under relational composition. Then $F(Q \rightarrow Q) \leq B(Q)$; hence by the right regular representation there exists Q such that $S \leq B(Q)$. For an element $s \in S \leq B(Q)$, denote the inverse relation by $s^{-1} \in B(Q)$.

Then $S \leq\left\langle S \cup\left\{s^{-1} \in B(Q) \mid s \in S\right\}\right\rangle_{B(Q)}$ (the subsemigroup of $B(Q)$, generated by $S \cup\left\{s^{-1} \mid s \in S\right\}$). One would guess that this semigroup is regular, since $s=s s^{-1} s$ and $s^{-1}=s^{-1} s s^{-1}$; moreover for relations $\left(r_{1} r_{2}\right)^{-1}=r_{2}^{-1} r_{1}^{-1}$ and $\left(r^{-1}\right)^{-1}=r$. However $r=r r^{-1} r$ does not hold for arbitrary relations (but it does hold for functions and inverses of functions). Example: if $Q=\{a, b\}$ and r is defined by

then (a)r=a, but (a)r $r^{-1} r=(\{a, b\}) r=\{a, b\}$. Neither $B(Q)$ nor $\left\langle S \cup\left\{s^{-1} \mid s \in S\right\}\right\rangle$ are regular in general (see Section 1.3, Fact 1.5).

But we shall see later in Section 2.4 that if S is unambiguous, then $\langle S \cup$ $\left.\left\{s^{-1} \mid s \in S\right\}\right\rangle$ has a homomorphic image which is regular, contains S, and whose subgroups divide the groups of S (at least in the finite case).
1.2.3. The following construction embeds an arbitrary semigroup S into a regular semigroup $\operatorname{Reg}(S)$. However many properties of S are lost when replacing it by $\operatorname{Reg}(S)$. Some of the lost properties (like inverse, orthodox, etc.) can be recovered
if suitable relations (in terms of the generators) are imposed on $\operatorname{Reg}(S)$ (and then we obtain the constructions $\operatorname{Inv}(S)$, $\operatorname{Orth}(S)$, etc.).

The semigroups $\operatorname{Reg}(S), \operatorname{Inv}(S), \operatorname{Orth}(S), \ldots$ will not be used as such in the rest of the paper; some of their properties are stated as conjectures, and further research is needed.

1.2.4. The semigroup $\operatorname{Reg}(S)$

Let S be a semigroup and let $\bar{S}=\{\bar{s} \mid s \in S\}$ be a set disjoint from S and in one-toone correspondence with S. Then $\operatorname{Reg}(S)$ is the semigroup presented by the set of generators $S U S$ and the relations:
(1) $s_{1} s_{2}=s_{3}$ if $s_{1} \cdot s_{2}=s_{3}$ (where \cdot denotes multiplication in S).
(2) $\bar{s}_{1} \bar{s}_{2}=\overline{s_{2}} \cdot s_{1}$.
(3) If w is a word over $S \cup \bar{S}$, then $v=w \bar{w} w$, where \bar{w} is defined as follows: if $w=\left(x_{1}, \ldots, x_{n}\right) \in(S \cup \bar{S})^{+}$then $\bar{w}=\left(\bar{x}_{n}, \ldots, \bar{x}_{1}\right)$; here $\bar{x} \in S \cup \bar{S}$ is defined by:

$$
\bar{x}:=\left\{\begin{array}{l}
\bar{s} \text { if } x=s \in S, \\
s \text { if } x=\bar{s} \in \bar{S} .
\end{array}\right.
$$

Remark. By the relations (2), \bar{S} can be considered to be the reverse semigroup of the semigroup S.

Relations (1) and (2) together define the free product of S and its reverse \bar{S}. So $\operatorname{Reg}(S)$ is the free product of S and \bar{S}, with the relations (3) imposed on it.

Remark. $\operatorname{Reg}(S)$ is a generalization of the so-called "free *-regular semigroup over a set of generators''.

Properties of $\operatorname{Reg}(S)$. (i) $\operatorname{Reg}(S)$ is regular (by the relations (3)).
(ii) Reg(\cdot) is a functor: If $\varphi: S \rightarrow T$ is a morphism, then there exists a morphism $\operatorname{Reg}(\varphi): \operatorname{Reg}(S) \rightarrow \operatorname{Reg}(T)$ (defined in the obvious way) etc. If φ is surjective, then $\operatorname{Reg}(\varphi)$ is surjective.

Conjecture. $S \leq \operatorname{Reg}(S)$.

This is harder to prove than it seems at first sight, but probably not too hard. E.g. the following reasoning outlines a proof that: if $s \neq{ }_{J} t$ in S, then $s \neq t$ in $\operatorname{Reg}(S)$.

Indeed, if $s \not \equiv_{J} t$, then $t \notin\left\{x \in S \mid x \geq_{J} s\right\}^{\circ}$ (Rees quotient), or conversely $s \notin$ $\left\{x \in S \mid x \geq_{f} t\right\}^{\circ}$. Consider now the Rees quotient morphism $\varphi: S \rightarrow\left\{x \geq_{J} s\right\}^{\circ}$, and
 $\operatorname{Reg}(\varphi): s \rightarrow s(\neq 0)$ and $t \rightarrow 0$. That $t \rightarrow 0$ is clear; to show that in $\operatorname{keg}\left(\left\{x \mid x \geq_{J} s\right\}^{\circ}\right\}$, $s \neq 0$, observe that when the relations (1), (2) and (3) are applied, s is factored; but factors of s are all $\geq_{J} s$ hence never 0 in $\left\{x \mid x \geq_{J} s\right\}^{\circ}$.

Conjeciure. Reg(S) may be infinite if S is finite. In fact, if $a, b \in S$ are not comparable in the \leq_{J}-order, then $(a \bar{b})^{n} \neq(a \bar{b})^{m}$ if $n \neq m$.

We shall not use $\operatorname{Reg}(S)$ itself in the main part of this paper, but a construction $(S)_{\text {reg }}$ such that: $(S)_{\text {reg }}$ is a homomorphic image of $\operatorname{Reg}(S)$ with a zero added; and $S \leq(S)_{\text {reg }}$ if S is 'unambiguous' (defined later).

1.2.5. The semigroup $\operatorname{Inv}(S)$

$\operatorname{Inv}(S)$ is defined to be $\operatorname{Reg}(S)$ with the following relations added:
(4) $w \bar{w} \bar{w} w=\bar{w} w w \bar{w}, \quad$ for any word w over $S \cup \bar{S}$.
1.1. Fact. $\operatorname{Inv}(S)$ is an inverse semigroup.

Proof. Regularity follows from the relations (3). We must show that all idempotents of $\operatorname{Inv}(S)$ commute.

Let e be any idempotent of $\operatorname{Inv}(S)$; then $e=\bar{e}$, for

$$
\begin{aligned}
e & =e \bar{e} e & & \text { by (3) } \\
& =e \bar{e} \bar{e} e & & \text { since } \bar{e}^{2}=\bar{e} \\
& =\bar{e} e e \bar{e} & & \text { by (4) } \\
& =\bar{e} e \bar{e} & & \text { since } e=e^{2} \\
& =\bar{e} & & \text { by (3). }
\end{aligned}
$$

Also, the product of any two idempotents e, f of $\operatorname{Inv}(S)$ is an idempotent. Indeed let $e=e^{2}, f=f^{2} \in \operatorname{Inv}(S)$; then

$$
\begin{aligned}
e f & =e f \cdot \overline{e f} \cdot e f & & \text { by (3) } \\
& =e f f \bar{e} e f & & \text { by (2) } \\
& =e f f e e f & & \text { since by the above: } e=\bar{e}, f=\bar{f} \\
& =e f \cdot e f & & \text { since } e=e^{2}, f=f^{2} \\
& =(e f)^{2} . & &
\end{aligned}
$$

Now finally,

$$
\begin{aligned}
e f & =\overline{e f} & & \text { since we proved that } e f \text { is an idempotent } \\
& =\overline{f e} & & \text { by (2) } \\
& =f e & & \text { since } e=\bar{e}, f=\bar{f} .
\end{aligned}
$$

Conjecture. If in S the idempotents commute, then $S \leq \operatorname{lnv}(S)$.
Conjecture. $\operatorname{Inv}(S)$ can be infinite if S is finite.

1.2.6. The semigroup Orth(S)

$\operatorname{Orth}(S)$ is defined to be $\operatorname{Reg}(S)$ with the following relations added:
(4') $\left(w_{1} \bar{w}_{1} \bar{w}_{1} w_{1} w_{2} \bar{w}_{2} \bar{w}_{2} w_{2}\right)^{2}=w_{1} \bar{w}_{1} \bar{w}_{1} w_{1} w_{2} \bar{w}_{2} \bar{w}_{2} w_{2}$ for all words w_{1}, w_{2} over $S \cup \bar{S}$.
1.2. Fact. Orth(S) is an orthodox semigroup.

Proof. Clearly Drth(S) is regular (by (3)). We must show that the product of any two idempotents e, f of orth(S) is an idempotent:

$$
\begin{array}{rlrl}
e f & =e \bar{e} e f f f & & \text { by }(3) \\
& =e \overline{\widetilde{ }} \text { effff } & & \text { since } \bar{e}^{2}=\bar{e}, f^{2}=\bar{f} \\
& =(e \overline{\text { ē}} e f f f f)^{2} & & \text { by }\left(4^{\prime}\right), \text { letting } w_{1}=e \text { and } w_{2}=f . \\
& =(e f)^{2} . & \square
\end{array}
$$

Remark. Axiom (4') is a consequence of Fact 1.2 since $w_{i} \bar{w}_{i}$ and $\bar{w}_{i} w_{i}$ are idempotents.

Conjecture. If the idempotents of S form a subsemigroup, then $S \leq \operatorname{Orth}(S)$.
Conjecture. Orth(S) can be infinite if S is finite.

Remark. Other similar constructions can be devised, inspired from various semigroup properties. E.g.:

$$
\begin{array}{ll}
\text { groups } & G(S)=(S \cup \bar{S})^{*} /(s \bar{s}=\bar{s} s=1), \\
\text { bicyclic } & B C(S)=(S \cup \bar{S})^{*} /(\bar{s} s=1) .
\end{array}
$$

We shall not use these constructions in their general form in this paper and they need further research; they are generalizations of certain previously known constructions (that are 'free' in various ways) to arbitrary semigroups.

1.3. Counterexamples

Another notion that one could think of, but which does not exist, is the notion of the "regular subsemigroup generated by an arbitrary subsemigroup of a regular semigroup." I.e., if $S \leq T$ and T is regular one could consider $\bigcap\{R / S \subseteq R \leq T, R$ regular \}; this subsemigroup exists, but it might not be regular.
1.3. Fact. The intersection of t wo regular subsemigroups of a regular semigroup can be non-regular.
Proof. Consider the regular semigroups S, and $S_{1}, S_{2} \leq S$ defined by

$$
\begin{aligned}
& S=\mathscr{H}^{0}\left(\{1,2\} \times\left\{e=e^{2}\right\} \times\{1,2,3\}\right), \\
&
\end{aligned}
$$

$$
S_{2}=. / /^{\prime \prime}(\{1,2\} \times\{e\} \times\{1,3\})
$$

	1	3
1	0	e
2	e	0

(These are Rees-matrix semigroups, with matrices given above.) Then $S_{1} \cap S_{2}=$.$/^{0}(\{1,2\} \times\{e\} \times\{1\})$ is non-regular since it is given by

0	1
	0

1.4. Fact. The intersection $\bigcap_{n \in \omega} R_{n}$ of a nested chain $R_{1} \supset R_{2} \supset \cdots \supset R_{n} \supset \cdots$ of regular semigroups can be empty, or non-empty and non-regular.

Proof. Lei $R_{1}=. "^{0}\left(\{1,2\} \times\left\{e=e^{2}\right\} \times \omega+1\right)$, i.e., R_{1} is given by

and let $R_{n}=.^{0}\left(\{1,2\} \times\left\{e=e^{2}\right\} \times\{n, n+1, \ldots, \omega\}\right.$) (for $n \in \omega$), given by

also define

$$
R_{\omega}=\begin{array}{|}
0 \\
\hline e \\
\hline
\end{array}
$$

Clearly all semigroups R_{n} with $n \in \omega$ are regular, but $\bigcap_{n \in \omega} R_{n}=R_{\omega}$, and R_{ω} is not regular.

An example of a chain of regular semigroups whose intersection is empty is $R_{1}=$ $(\mathbb{N}, \max), R_{n}=(\{x \in \mathbb{N} \mid x \geq n\}, \max \}$.

Question. Can every semigroup S be embedded (\leq) in a regular semigroup which has thesame subgroups (or the same divisors) as S ?

Guessed answer: No; there even exist combinatorial semigroups which can not be embedded in a regular combinatorial semigroup.
1.5. Fact. Let K be any cardinal with $K \geq 4$, and let $B(K)$ be the semigroup of all binary relations on a set of K elements (under relational composition). Then $B(K)$ is non-regular.

Proof. $B(K)$ can be described faithfully by $K \times K$ Booiean matrices - with entries in the semiring $(\{0,1\} ;+, \cdot)$, with $0+0=0,1+0=0+1=1+1=1$, and $1 \cdot 1=1$, $1 \cdot 0=0 \cdot 1=0 \cdot 0=0$.

Consider the element $x \in B(K)$ given by the matrix

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \\
1 & 0 & 1 & 0 & \\
1 & 0 & 0 & 0 & \\
& & 0 & & 0
\end{array}\right]
$$

We claim that x is non-regular, i.e., $\forall y \in B(K): x \neq x y x$. Let

$$
y=\left[\begin{array}{llllll}
a & b & c & d & * & \cdots \\
e & f & g & h & * & \cdots \\
i & j & k & l & * & \cdots \\
* & * & * & * & * & \cdots \\
\cdot & \cdot & \cdot & & & \cdots \\
\cdot & \cdot & \cdot & & & \cdots
\end{array}\right]
$$

and assume $x=x y x$. Then

$$
\begin{aligned}
x y x & =\left[\begin{array}{ccccc}
a+e & b+f & c+g & d+h & \cdots \\
e+i & f+j & g+k & h+l & \cdots \\
a+i & b+j & c+k & d+l & \cdots \\
a & b & c & d & \cdots \\
& & 0 & &
\end{array}\right] \cdot\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & \\
& 0 & & 0
\end{array}\right] \\
& =x=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & \\
0 & 1 & 1 & 0 & \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & \\
& 0 & & 0
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{l}
(\text { row } 2) \times(\text { column } 1): e+i+g+k+h+l=0 \\
\Rightarrow e=i=g=k=h=l=0, \\
(\text { row } 1) \times(\text { column } 3): b+f+c+g=0 \\
\Rightarrow b=f=c=g=0, \\
(\text { row } 3) \times(\text { column } 2): a+i+b+j=0 \\
\Rightarrow a=i=b=j=0 .
\end{array}\right.
$$

But also (row 1) \times (column 2): $a+e+b+f=1$. This however is impossible, since we just obtained that $a=e=b=f=0$.

The relation

$$
x=\left[\right]
$$

can be written as $x=f^{-1} \cdot g$, where f and g are functions (acting on the right). Indeed, the graph of x can be represented as:

which is equal to

$\mathrm{f}^{-1} \quad \mathrm{~g}$
assuming $Q=\left\{1,1^{\prime}, 2,2^{\prime}, \ldots\right\}$.
Consider the semigroup $S=\langle f, g\rangle_{B(Q)}$. Then the semıgroup $\left\langle S \cup\left\{s^{-1} \mid s \in S\right\}\right\rangle_{B(Q)} \subseteq$ $B(Q)$ is not regular (since it sontains the above relation x, which is non-regular in $B(Q))$.

2. Embedding an unambiguous semigroup in a regular semigroup

2.1. Results from [1]

Definition. A semigroup S has unambiguous R-order iff ($\forall x, y, z \in S$): $y \geq_{g x} x$ and $z \geq, x$, implies y and z are R-comparable (the same definition can be made for the L-order).

A semigroup is unambiguous if both its R - and its L-order are unambiguous.
Definition. A semigroup S has $h_{: A}$ ('Dedekind height property' for the R-order) iff for any $x \in S$ there exists a bound (depending only on x) on the length of all $>_{n-}$ chains ascending from \boldsymbol{x} (the same definition can be made for L).

Remark, A semigrcup has $h_{\text {g }}$ and unambiguous R-order iff the Hasse diagram of the $>_{\#}$-relation on S / \equiv is a union of disjoint rooted trees - so for every vertex there is a unique dense path to a root; moreover this dense path to the root is finite.

Definition. The semigroup S is finite-J-above iff $(\forall s \in S$): the set $J(\geq s)=$ $\{x \in S \mid: \geq, s\}$ is finite.

Definition. The semigroup $S_{s}=\{x \in S \mid s x=s\}$ is called the right-stabilizer of s in S.
See [1] or [8, part II] for more details on the above definitions.
Definition. (Properties of surmorphisms). Let $\varphi: S \rightarrow T$ be a surmorphism of semigroups.
φ is H-injective iff the restriction of φ to any H-class of S is injective.
φ is cyclic-injective iff the restriction of φ to any cyclic subsemigroup of S is injective.
φ preserves idempotents iff for any idempotent $e \in T$, $(e) \varphi^{-1}$ consists only of idempotents (equivalently the inverse image of a band is a band).
φ preserves groups (in the weak sense) iff for any group $G \leq T$ there is a group $G^{\prime} \subseteq(G) \varphi^{-1} \subseteq S$ such that $G=\left(G^{\prime}\right) \varphi$.
φ preserves torsion-identities iff ($\forall t \in T$): t satisfies $t^{n+k}=t^{n}$ and $(s) \varphi=t \Rightarrow s$ satisfies $s^{n+k}=s^{n}$.
φ is D^{*} iff the inverse image of any regular D-class of T is a unique regular D-class of S.
φ is strongly J^{*} iff the inverse image of a set of J-equivalent regular elements of T is regular and is all contained in one J-class of S.

See [1] for more details on these definitions and the following theorem.
2.1. Theorem. For any semigroup S, generated by a subset A, there exists a semigroup \hat{S}_{A}^{+}, generated by σ subset of cardinality $|A|$ (and also denoted by A),
and a surmorphism $\eta: \hat{S}_{A}^{+} \rightarrow S$ which is injective on A; the following properties hold for S_{A}^{+}and η :
(1) \hat{S}_{A}^{+}is unambiguous and has h_{y} and $\mathrm{h}_{\text {s. }}$.
(2) Non-regular H-classes of \hat{S}_{A}^{+}are singletons.
(3) Left and right stabilizers in \hat{S}_{A}^{+}are aperiodic.
(4) \hat{S}_{A}^{+}is finite if S is finite; if S is infinite, then \hat{S}_{A}^{+}has the same cardinality as S; if S is finite-J-above, then so is S_{A}^{+}.
(5) η is H-injective and cyclic-injective.
(6) η is D^{*} and strongly J^{*}.
(7) η preserves groups (weakly) and torsion-identities.

This theorem means that in global semigroup theory we can replace any semigroup S by S_{A}^{+}, and obtain properties (1) to (4) - provided the preservation properties (5)-(7) of are good enough for our applications.

We shall show next that an unambiguous semigroup whose non-regular H-classes are singletons (e.g., \hat{S}_{A}^{+}for any S) can be embedded in a regular semigroup having the same subgroups as the given semigroup.

2.2. The construction $(S)_{\text {reg }}$

Let S be an unambiguous semigroup and let $\bar{S}=\{\bar{s} \mid s \in S\}$ be a set that is disjoint from S. Let 0 be an additional element which is neither in S nor in \bar{S}.

Let $(S)_{\text {reg }}$ be the semigroup defined by the generators $S \cup \bar{S} \cup\{0\}$ and the foilowing axioms:
(1) $s_{1} s_{2}=s_{3}$ if $s_{1} \cdot s_{2}=s_{3}$ in S (where - denotes the multiplication of S).
(2) $\bar{s}_{1} \bar{s}_{2}=\bar{s}_{3}$ if $s_{2} \cdot s_{1}=s_{3}$ in S.
(3) $00=0$.

Remark. The semigroup generated by $S \cup \bar{S} \cup\{0\}$ and satisfying (1), (2), (3), is the free product of the semigroup S, \bar{S} (considered to be the reverse semigroup of S), and $\{0\}$ (the one-element semigroup). On this free product we add the following axioms:
(4) $0 s=s 0=0=0 s=s 0$, for any $s \in S$ (i.e., 0 acts as a zero).
(5) $s \bar{s} s=s$ and $\bar{s} s \bar{s}=\bar{s}$, for any $s \in S$ (i.e., s and \bar{s} are inverses).
(6L) $s_{1} \bar{s}_{2}=0$ if $s_{1} y_{y} s_{2}$ (where ${ }_{z}$, denotes incomparability in the L-order of S).
(6R) $\tilde{s}_{1} s_{2}=0$ if $s_{1} x_{2}$ (where s_{x} denotes incomparability in the R-order of S). (See [5, Vol. 2], and [6] for the free product of semigroups and related topics.)

Remark. Unambiguity of S is required for the following reason: Suppose $x<y$, so $\exists a \in S: x=a y$; therefore $x=x \bar{x} x=x \overline{a y} x=x \bar{y} \bar{a} x$. But we could have also $\because=x_{1} \cdot x_{2}$ with $x_{2} y$; so $x_{2} \bar{y}=0$, thus $x \bar{y}=x_{1} x_{2} \bar{y}=x_{1} 0=0$, which implies $x=x \bar{y} \bar{a} x=0 \bar{a} x=0$. This we want to avoid since we want $S \leq(S)_{\text {reg }}$. However, in this case the L-order
is ambiguous, since

Similar remarks apply to the R-order.
Remark (Intuitive idea of the construction). Since we want to embed S in a regulai semigroup we have to introduce regular inverses - hence we have relation (5) (here we actually introduce a new inverse for every element of S; later we shall discuss the possibility of introducing new inverses only for non-regular elements); we want these new inverses to be regular, which follows from relations (2) and (5). Relation (1) is needed if we want S to be embedded in the new semigroup.

Axioms ($6 R_{v}, L$) are critical ones; as we shall prove very soon, their effect is to make products of old elements $s_{k} \in S$ and new elements $\bar{s}_{i} \in \bar{S}$ regular. Recall (1.1) where we argued that regularity means "repeatability with the same results"; intuitively, one way to obtain repeatability of a transformation s is "to go back into the past" up to the moment then s was applied first; call s this action of going into the past before s; so now we have the product $s \dot{s}$ (in the group case, the backwards movement $\overline{\bar{s}}$ erases s; in the semigroup case \bar{s} is "superimposed" on s). However, going back into the past is related to the L-order: if $s=s_{1} s_{2} \cdots s_{n-1} s_{n}$, then the last action was s_{n}, the previous last action was $s_{n-1} s_{n}$; before that the last action was $s_{n-2} s_{n-1} s_{n}$ etc.; of course $s_{1} s_{2} \cdots s_{n} \leq_{y} \cdots \leq_{y} s_{n-1} s_{n} \leq_{y} s_{n}$.

Unambiguity of the L-order means here that there is a unique path back into the past (although we do not know uniquely how far back in the past the last action occurred). Axiom (6L) now means that if we apply s_{1} and we than go back into the past by s_{2}, we make $s_{1} \bar{s}_{2}$ undefined (this is what 0 means) if s_{2} does not lie on the path into the past on which s_{1} is (i.e., if we try to go into a past that could not have happened).

Dually, the R-order can be interpreted as forward movement in time; axiom (6R) means, that we went into the past by the amount \bar{s}_{1}, and after that we move forward in time by the amount s_{2}. If however s_{2} does not lie on the forward path that was used by \bar{s}_{1} to go backwards in time, then we make $\bar{s}_{1} s_{2}$ undefined $(=0)$.

In both cases: we do not go backwards on a path that is incompatible with previous forward movements, and we do not go forward on a path that is incompatible with earlier backwards movements. This, intuitively, should avoid the introduction of new groups (cycles).

All this appears more clearly in the following.

2.3. Normal form of elements of $(S)_{\mathrm{reg}}$, and regularity

2.2. Eact. Every element w of $(S)_{\mathrm{reg}}$ is either 0 or can be written (in a not neces-
sarily unique way) in one of the following two normal forms:

$$
\begin{equation*}
r=\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right) \tag{1}
\end{equation*}
$$

(elements in parentheses may or may not be present in the product) with

$$
\begin{aligned}
& \left(s_{1}>_{y}\right) t_{1}>_{n} s_{2}>_{k} t_{2}>_{n} \cdots>_{y} t_{k-1} \geq_{k} s_{k} \leq t_{k}<x<_{k} s_{n-1}<_{y} t_{n-1}\left(<_{n} s_{n}\right) \\
& \text { not both } \equiv \text { (i.e., } \cdot>s_{k}<\cdot \text { or } \cdot \geq s_{k}<\cdot \text { or } \cdot>s_{k} \leq \cdot \text {). }
\end{aligned}
$$

The element s_{k} is called the center of the normal form. The subwords that are left, resp. right, of the center, are called the left-, resp. right side.

$$
\begin{equation*}
r=\left(s_{1}\right) t_{1} s_{2} t_{2} \cdots s_{k} \bar{t}_{k} s_{k+1} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right) \tag{2}
\end{equation*}
$$

(again, elements in parentheses may or may not be present) with

$$
\left(s_{1}>y\right) t_{1}>s_{n} s_{2} t_{2}>A \gg_{A} s_{k}>, t_{k}<A s_{k+1}<, \cdots<s_{n-1}<, t_{n-1}\left(<{ }_{i} s_{n}\right) .
$$

The element \bar{t}_{k} is called the center of this normal form.

Remark. Strictly speaking, the normal form is not the element $r \in(S)_{\text {reg }}$, but the sequence $w=\left(\left(s_{1},\right) \bar{t}_{1}, \ldots, \bar{t}_{n-1}\left(, s_{n}\right)\right) \in(S \cup \bar{S})^{+}$, with components aiternately in S and \bar{S}, and satisfying the L - and R-orderings given in (1) and (2). (Notation: A^{+}is the free semigroup over the set of generators A.)

It is convenient to use the following graphical representation of normal forms (which is related to the remarks on forward and backward movement made earlier). The normal form $s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{t}_{n-1} s_{n}$ witi

$$
s_{1}>y_{k} t_{1}>s_{2}>y t_{2} \gg_{k} t_{k-1} \geq_{k} s_{k} \leq t_{k}<\cdots<{ }_{k} s_{n-1}<, t_{n-1}<s_{n}
$$

will be drawn as in Fig. 1.

Fig. 1.

Here, elements $s_{i} \in S$ are represented by upward arrows (cf. forward movement) and elements $\bar{t}_{j} \in \bar{S}$ are represented by downward arrows (backward movement). The relative length of arrows represents the L-resp. R-depth of the components:

Similarly, the normal form $s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \bar{t}_{k} s_{k+1} \cdots s_{n-1} \bar{t}_{n-1} s_{n}$ with

$$
s_{1}>y_{y} t_{1}>{ }_{n} s_{2}>_{i} t_{2} \gg_{n} \cdots>_{n} s_{k}>_{y} t_{k}<n s_{k+1}<y<n s_{n-1}<t_{n-1}<n s_{n} s_{n}
$$

is drawn as in Fig. 2.

Fig. 2.
Proof of (2.2). We start out with any word in ($S \cup \bar{S})^{+}$. By axioms (1) and (2), this word is equivalent to one in which the components are alternately in S and \bar{S}, i.e., now every subsegment of length 2 has either the form $\bar{x} y$ or $x \bar{y}$. If for the subsegment $\bar{x} y$, we have $x \mathcal{E}_{\vec{T}} y$ then $\bar{x} y=0$ (by axiom (6R)), so the whole word is equivalent to 0 (by axiom (4)). Similarly, if for the subsegment $x \bar{y}$ we have $x{ }_{x}{ }_{\varphi} y$, then $x \bar{y}=0$ and then the whole word will be equivalent to 0 .

Let us assume now that adjacent components of the word w ar ? L-, resp. R comparable. We can prove then, by induction on the length of the word w $\left(\in(S \cup \bar{S})^{+}\right)$, that it is equivalent to a word in one of the above normal forms.

If the word w has length ≤ 2, then it is in normal form.
If the word w has length ≥ 3, then it contains a subsegment of the form $\overline{x y z}$ with $x \gtrless_{*} y \gtrless_{y} z$, or a subsegment $x \bar{y} z$ with $z \gtrless_{y} y \gtrless_{i} z$.

Let us consider the case $\overline{x y} \bar{z}$; the comparability relations take one of the following forms:

$$
x<_{*} y<, z \text { or } x>_{k} y>_{y} z \text { or } \underbrace{x \geq_{k} y \leq_{y} z}_{\text {not both } \equiv} \text { or } x \leq_{x} y \geq_{y} z \text {. }
$$

In the latter case we can reduce the length of the word w as follows: since there exist $u, v \in S^{1}$ with $x=y u, z=v y$, we can write the subsegment $\bar{x} y \bar{z}$ as $\bar{y} \bar{u} y \overline{v y}$, which by axiom (2) is equivalent to $\bar{u} \bar{y} y \bar{y} \bar{v}$ (if u or $v=1 \in S^{1}$ we do not write \bar{u} or \bar{v}); this is equivalent (by axion (5)) to $\bar{u} \bar{y} \bar{v}$ which is $\overline{v y u}$ (by axiom (2)); hence we have replaced the subsegment $\bar{x} y \bar{z}$ (of length 3) by the subsegment $\overline{v y u}$ of length 1 .

The case $x \bar{y} z$ is dealt with similarly: the comparability relations are

$$
x<y, y<x z \text { or } x>_{y} y>_{x} z \text { or } \underbrace{x \geq y x_{y} z}_{\text {not both }} \text { or } x \leq_{y,} y \geq_{y} z .
$$

In the latter case we can reduce the length of the word w.
Inductively, we obtain that the word w is equivalent to a word in which all adjacent components are comparable (R or L as given by axiom (6)) but such that the comparability relations for three adjacent components always take the form $x<y<z$ or $x>y>z$ or $x \geq y \leq z$ (not both \equiv) - where R and L alternate. The case $x \leq y \geq z$ does not occur anymore.

It is now easy to see that the configuration $x_{1}<y_{1}$ cannot occur left of the configuration $x_{2}>y_{2}$ (otherwise, since the word is finite, at some point there is a transition from $\lll \cdots$ to $\cdots \ggg$, where we have then $\cdot \leq \cdot \geq \cdot$; this contradicts the assumption that this configuration has been eliminated). Therefore the orderings in the word take the shape $\gg \cdots>\geq \leq<\cdots \ll$; at the center we have $\cdot \geq \cdot \leq \cdot$ (not both \equiv, since $\cdot \equiv \cdot \equiv$ is an instance of $\cdot \leq \cdot \geq \cdot$).

This proves the fact.
2.3. Corollary. If S is finite, then $(S)_{\text {reg }}$ is finite.

2.4. Fact. The semigroup $(S)_{\text {reg }}$ is regular.

Proof. We shall prove that if $w=\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)$ with

$$
\left(s_{1}>y\right) t_{1}>n s_{2}>y, t_{2} \gg_{n} t_{k-1} \geq_{n} s_{k} \leq, t_{k}<n \ll_{i} s_{n-1}<t_{n-1}\left(<, s_{n}\right),
$$

then $w^{\prime}=\left(\bar{s}_{n}\right) t_{n-1} \bar{s}_{n-1} \cdots t_{k} \bar{s}_{k} t_{k-1} \cdots t_{2} \bar{s}_{2} t_{1}\left(\bar{s}_{1}\right)$ with

$$
\left.\left(s_{n}>{ }_{n}\right) t_{n-1}>, s_{n-1}>, \cdots>\right\rangle_{k} t_{k} \geq, s_{k} \leq_{i} t_{k-1}<, \cdots<, t_{2}<, s_{2}<, t_{i}\left(<, s_{1}\right),
$$

is an inverse for w (i.e., $w=w w^{\prime} w$).
This will be proved by induction on n, the length of the shortesi normal form representation that exists for the element in ($S)_{\text {reg }}$.

First, those elements having a normal form representation of length 1 satisfy our claim (this is the content of axiom (5): $s=s \bar{s} s$ and $\bar{s}=\bar{s} s \bar{s}$).

Assume now that elements naving a normal form of length shorter than the length of w (and center in S) satisfy our claim. Then

$$
\begin{aligned}
& w w^{\prime} w \\
& \quad=\left[\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)\right]\left[\left(\bar{s}_{n}\right) t_{n-1} \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} t_{1}\left(\bar{s}_{1}\right)\right]\left[\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{s}_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)\right] .
\end{aligned}
$$

Since $t_{n-1}<{ }_{n}, s_{n}<, t_{1}$, there exist $a, b \in S$ such that $t_{n-1}=s_{n} a, s_{1}=b t_{1}$; so

$$
\begin{aligned}
& w w^{\prime} w \\
& \quad=\left[\left(s_{1}\right) \bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)\right]\left[\left(s_{n}\right) \cdot s_{n} a \cdot \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} \cdot b s_{1} \cdot\left(\bar{s}_{1}\right)\right]\left[\left(s_{1}\right) \bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)\right] \\
& \quad=\left(s_{1}\right) \bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1} s_{n} a \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} b s_{1} \bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right) \\
& \quad=\left(s_{1}\right)\left[\bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1}\right]\left[t_{n-1} \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} t_{1}\right]\left[\bar{t}_{1} s_{2} \cdots s_{n-1} \bar{t}_{n-1}\right]\left(s_{n}\right)
\end{aligned}
$$

Thus we have reduced the length of the normal form. We can continue as follows: since $t_{n-1}>, s_{n-1}, t_{1}>{ }_{\phi} s_{2}$ there exist $c, d \in S$, with $s_{n-1}=c t_{n-1}, s_{2}=t_{1} d$; then

$$
\begin{aligned}
w w^{\prime} w & =\left(s_{1}\right)\left[\bar{t}_{1} s_{2} \bar{t}_{2} \cdots c t_{n-1} \cdot \bar{t}_{n-1}\right]\left[t_{n-1} \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} t_{1}\right]\left[\bar{t}_{1} \cdot t_{1} d \cdot \bar{t}_{2} \cdots s_{n-1} \bar{t}_{n-1}\right]\left(s_{n}\right) \\
& =\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{t}_{2} \cdots c t_{n-1} \bar{s}_{n-1} \cdots t_{2} \bar{s}_{2} t_{1} d \bar{t}_{2} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right) \\
& =\left(s_{1}\right) \bar{t}_{1}\left[s_{2} \bar{t}_{2} \cdots s_{n-1}\right]\left[\bar{s}_{n-1} \cdots t_{2} \bar{s}_{2}\right]\left[s_{2} \bar{t}_{2} \cdots s_{n-1}\right] \bar{t}_{n-1}\left(s_{n}\right) .
\end{aligned}
$$

Thus, inductively, we obtain $w w^{\prime} w=u$.
The case of elements of $(S)_{\text {reg }}$ representable by a normal form with center in S is treated similarly: the inverse of $\left(s_{1}\right) \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \bar{t}_{k} s_{k+1} \cdots s_{n-1} \bar{t}_{n-1}\left(s_{n}\right)$ with $\left(s_{1}>,\right) t_{1}>{ }_{k} s_{2}>, t_{2} \gg_{k} \cdots>_{k} s_{k} t_{k}<s_{k+1}<s_{j} \cdots\left(<_{k} s_{n}\right)$ is

$$
\left(\bar{s}_{n}\right) t_{n-1} \bar{s}_{n-1} \cdots \bar{s}_{k+1} t_{k} \bar{s}_{k} \cdots t_{2} \bar{s}_{2} t_{1}\left(\bar{s}_{1}\right)
$$

with

$$
\left(s_{n}>\right)_{n-1}>, s_{n-1}>n>s_{k} s_{k+1} \gg_{k} t_{k}<s_{k}<\cdots<_{n} t_{2}<s_{2}<s_{n} t_{1}\left(<s_{1}, s_{1}\right) .
$$

Finally, the case of the element 0 is trivial since $000=0$ (axiom (3)).
2.5. Fact. The normal form representations of elements of $(S)_{\mathrm{reg}}$ is usually not unique. The following holds:
(a) If $a s \equiv_{y} s$, then $\overline{a s} \cdot a s=\overline{s s}$ in $(S)_{\mathrm{reg}}$.
(b) $s b \equiv_{y} s$, then $s b \cdot \overline{s b}=s \bar{s}$ in $(S)_{\text {reg }}$.

Proof of (a). ((b) is proved dually.)

$$
\begin{aligned}
\overline{a s} a s & =\overline{a s} \cdot a s \bar{s} s & & (\text { since } s \bar{s} s) \\
& =\overline{a s} \cdot a s \cdot \overline{c a s} \cdot s & & \left(\text { since } a s \equiv, s, \exists c \in S^{1}: c a s=s\right) \\
& =\overline{a s} \cdot a s \cdot \overline{a s} \cdot \bar{c} \cdot s & & \text { (hy axiom (2); } \bar{c} \text { is dropped if } c=1) \\
& =\overline{a s} \cdot \bar{c} \cdot s & & \text { (by axiom (5)) } \\
& =\overline{c a s} \cdot s & & \text { (since } \overline{c a s}=\overline{a s} \cdot \bar{c}, \text { axiom (2)) } \\
& =\bar{s} \cdot s . & &
\end{aligned}
$$

2.6. Corollary. (a) If $a s \equiv$, s, then $\left(V t_{i}, t_{2} \in S\right)$: $\overline{a s t_{1}} \cdot a s t_{2}=\overline{s t_{1}} \cdot s t_{2}$.
(b) If $s b \equiv{ }_{\pi} s$, then $\left(\forall t_{1}, t_{2} \in S\right): t_{1} s b \cdot \overline{t_{2} s b}=t_{1} s \cdot \overline{t_{2} s}$.

Proof of (a). $\overline{a s t_{1}} \cdot a s t_{2}=\bar{t}_{1} \overline{a s} \cdot a s t_{2}=\bar{t}_{1} \bar{s} s t_{2}$ (by the fact). Now use axiom (2).
2.7. Corollary. Elements of $(S)_{\text {reg }}$ that do not belong to $S \cup \tilde{S} \cup\{0\}$ do not have unique normal forms.

We shall see in the appendix that the above fact is the "only source of nonuniqueness" of the representation by normal forms.

2.4. Relations and their inverses

Before we deal with the non-uniqueness of the representation of an element of $(S)_{\text {reg }}$ by normal forms, and prove the main properties of $(S)_{\text {reg }}$ (regularity, embedding of S, etc.), we revisit example (1.2.2) and see how it can be made to work (i.e., the group divisors of S are preserved, and we obtain regularity).

Recall the idea of 1.2.2: embed $S \leq B\left(S^{1}\right)$ (the semigroup of all binary relations on the set S^{1}, under composition of relations). Within $B\left(S^{1}\right)$ consider the subsemigroup S_{B} which is generated by the set $S \cup\left\{s^{-1} \mid s \in S\right\}$ (where s^{-1} denotes the inverse relation of s). Then $S \leq S_{B}$. This semigroup could be non-regular, and one can show that it may contain groups that do not divide S (i.e., that are not homomorphic image of a subsemigroup of S).

Let us now introduce the additional assumption that S is unambiguous.
2.8. Fact. Assume S has unambiguous L-order. Then $s_{1} s_{2}^{-1}=0$ in S_{B} iff $s_{1} y_{B}, s_{2}$ in S (where 0 is the empty relation).

Proof. We have: $s_{1} s_{2}^{-1} \neq 0$ iff $\left(\exists x \in S^{1}\right):(x) s_{1} s_{2}^{-1} \neq \emptyset$ iff $\left(\exists x, u \in S^{1}\right): u \in(x) s_{1} s_{2}^{-1}$ iff ($\forall x, u \in S^{1}$): $u s_{2}=x s_{1}$.
(\Rightarrow) If for some $u, x \in S^{1}: u s_{2}=x s_{1}$, then s_{2} and $s_{1} \geq, u s_{2}\left(=x s_{1}\right)$. By unambiguity of the L-order of S, this implies $s_{1} \geqslant_{7} s_{2}$.
(\Leftrightarrow) Suppose $s_{1} \geqq_{y} s_{2}$, i.e., $s_{1} \geq_{y} s_{2}$ or $s_{1} \leq, s_{2}$.
If $s_{1} \geq s_{2}$, then $\left(\exists x \in S^{1}\right): x s_{1}=s_{2}$. So for $u=1: x s_{1}=u s_{2}$.
If $s_{1} \leq_{y} s_{2}$, then $\left(\exists u \in S^{1}\right): s_{1}=u s_{2}$. So for $x=1: x s_{1}=u s_{2}$.

This fact means that S_{B} satisfies axiom (6 L).
We mentioned already that S satisfies also axioms (1) (embedding), (2) (since for relations ($\left.R_{1} R_{2}\right)^{-1}=R_{2}^{-1} R_{1}^{-1}$), (3) and (4) (where here 0 is the empty relation), and (5).

To get axiom (6R) to hold (instead of (6L)) we can use the dual construction of S_{B} : Let $B^{*}\left(S^{1}\right)$ be the semigroup of all binary relations on S^{1}, under composition but this time we let the relations act on the left. It is easy to see that $B^{*}\left(S^{1}\right)$ is isomorphic to $B\left(S^{1}\right)$, by the isomorphism $R \mapsto R^{-1}$; however $S_{B^{*}} \leq B^{*}\left(S^{1}\right)$ defined by $S_{B^{*}}=\left\langle S \cup\left\{s^{-1} s \mid s \in S\right\}\right\rangle_{B^{*}\left(S^{\prime}\right)}$ is not necessarily isomorphic to S_{B}. This follows from:

2.9. Fact. Assume S has unambiguous R-order. Then

$$
s_{1}^{-1} s_{2}=0 \text { in } S_{B^{*}} \text { iff } s_{1} \text { 侯: } s_{2} \text { in } S .
$$

(The proof is dual to that of 2.8.)
Now $S \leq S_{B^{*}}$ and $S_{B^{*}}$ satisfies axioms (1) through (5) and (6R) - but (6L) does not necessarily hold.

To obtain a semigroup containing S and satisfying all the axions (1)-(5), (6R and L), we combine S_{B} and $S_{B^{*}}$ as follows:

First map the free semigroup ($\mathcal{U} \cup \bar{S} \cup\{0\})^{+}$onto S_{B} (and onto $S_{B^{*}}$) by: $w \in(S \cup S \cup\{0\})^{+} \rightarrow(w) \varphi \in S_{B}$, where $(w) \varphi$ is obtained from w by replacing component s by the relation $s \in S \subseteq S_{B}$, and \bar{s} by $s^{-1} \in S_{B}$, and 0 by the empty relation; similarly $\varphi^{*}:\{S \cup S \cup\{0\})^{+} \rightarrow S_{B^{*}}$.

Clearly φ and φ^{*} are surmorphisms.
From now on assume that S is unambiguous.
Next define the relation \approx on $(S \cup \bar{S} \cup\{0\})^{+}$by $w_{1} \approx w_{2}$ iff
(1) $\left(w_{1}\right) \varphi=0$ or $\left(w_{1}\right) \varphi^{*}=0$ (i.e., w_{1} acts as the empty relation, on the left or on the right), anal $\left(w_{2}\right) \varphi=0$ or $\left(w_{2}\right) \varphi^{*}=0$, or
(2) neither w_{1} nor w_{2} act as the empty relation (neither left nor right), and $\left(w_{1}\right) \varphi=\left(w_{2}\right) \varphi$ and $\left(w_{1}\right) \varphi^{*}=\left(w_{2}\right) \varphi^{*}$.
2.10. Claim. \approx is a congruence on $(S \cup \bar{S} \cup\{0\})^{+}$. Denote $(S \cup \bar{S} \cup\{0\})^{+} / \approx$ by S_{\approx}.

Proof. Reflexivitiy and symmetry are obvious. It is also easy to see that \approx is compatible with left and right multiplication in $(S \cup \bar{S} \cup\{0\})^{+}$. Transitivity is easily showed as follows: let $w_{1} \approx w_{2}, w_{2} \approx w_{3}$; from the definition, either w_{1}, w_{2}, w_{3} never act as 0 (neither left nor right), or each of w_{1}, w_{2}, w_{3} acts as 0 (on the left or the right - not necessarily all on the same side). If w_{1}, w_{2}, w_{3} never act as zero, then (by definition of $\approx)\left(w_{1}\right) \varphi=\left(w_{2}\right) \varphi,\left(w_{2}\right) \varphi=\left(w_{3}\right) \varphi$ and $\left(w_{1}\right) \varphi^{*}=\left(w_{2}\right) \varphi^{*},\left(w_{2}\right) \varphi^{*}=$ $\left(w_{3}\right) \varphi^{*}$; hence $w_{1} \approx w_{3}$. If w_{1}, w_{2}, w_{3} can act as 0 , then $\left[\left(w_{1}\right) \varphi=0\right.$ or $\left.\left(w_{1}\right) \varphi^{*}=0\right]$, and $\left[\left(w_{2}\right) \varphi=0\right.$ or $\left.\left(w_{2}\right) \varphi^{*}=0\right]$, and $\left[\left(w_{3}\right) \varphi=0\right.$ or $\left.\left(w_{3}\right) \varphi^{*}=0\right]$, hence $w_{1} \approx w_{3}$.
2.11. Claim. S_{\approx} satisfies all the axioms (1)-(5) and (6R), (6L). (Recall that we assume that S is unambiguous.)

Proof. (1) $s_{1} s_{2} \approx\left(s_{1} \cdot s_{2}\right)$ since $\left(s_{1} s_{2}\right) \varphi=\left(\left(s_{1} \cdot s_{2}\right)\right) \varphi$ and $\left(s_{1} s_{2}\right) \varphi^{*}=\left(\left(s_{1} \cdot s_{2}\right)\right) \varphi^{*}$.
(2) and (5) are proved similarly.
(4) $s 0 \approx 0$ since $(s 0) \varphi=0$ and (0) $\varphi=0$; the rest of (4), as well as (3), are proved similarly.
(6L.) If $s_{1} z_{2}, s_{2}$, then $\left(s_{1} \bar{s}_{2}\right) \varphi=s_{1} s_{2}^{-1}=0$ in S_{B} (by 2.8), thus $s_{1} \bar{s}_{2} \approx 0$ by the definition of \approx.
(6R) If $s_{1}{ }^{3}, s_{2}$, then $\left(\bar{s}_{1} s_{2}\right) \varphi^{*}=0$ in $S_{E^{*}}$ (by 2.9), hence $\bar{s}_{1} s_{2} \approx 0$, by the definition of \approx.
2.12. Claim. $S \leq S_{\approx}$ and $\left\{s^{-1} \mid s \in S\right\} \leq S_{\approx}$.

Proof. If $s_{1} \approx s_{2}$, then (since $s_{1}, s_{2} \in S$ never act as 0 in S_{B} or $S_{B^{*}}$): $\left(s_{1}\right) \varphi=\left(s_{2}\right) \varphi$ and $\left(s_{1}\right) \varphi^{*}=\left(s_{2}\right) \varphi^{*}$. Applying these to the element $1 \in S^{1}$ we obtain $s_{1}=1 \cdot s_{1}=(1)\left(\left(s_{1}\right) \varphi\right)=$ $(1)\left(\left(s_{2}\right) \varphi\right)=1 \cdot s_{2}=s_{2}$. So $s_{1}=s_{2}$. If $\bar{s}_{1} \approx \bar{s}_{2}$, then (since they never act as 0): $\left(\bar{s}_{1}\right) \varphi=\left(\bar{s}_{2}\right) \varphi$, thus $s_{1}^{-1}=s_{2}^{-1}$; hence (by a remark in 1.2.2), $s_{1}=s_{2}$.
2.13. Fact. Any semigroup generated by $S \cup \bar{S} \cup\{0\}$ and satisfying all the axioms (1)-(6) is a homomorphic image of $(S)_{\mathrm{reg}}$.

Proof. Assume T is generated by $S \cup \bar{S} \cup\{0\}$ and satisfies the axioms. The surmorphism $h:(S)_{\text {reg }} \rightarrow T$ is defined by associating to a product of generators in $(S)_{\text {reg }}$ the same product of generators in T. This is a function: if two words $w_{1}, w_{2} \in(S \cup \bar{S} \cup\{0\})^{+}$are the same when considered as products of generators in $(S)_{\text {reg }}$, then w_{1}, w_{2} must also be the same in T, since T satisfies the axioms (1)-(6).

Moreover h is a morphism, by the definition.
2.14. Corollary. S_{\approx} is a homomorphic image of $(S)_{\mathrm{reg}}$.
2.15. Fact. The homomorphism $h:(S)_{\text {reg }} \rightarrow S_{\approx}$ is injective when restricted to the subsemigroup generated by S.

Moreover, this semigroup generated by S in $(S)_{\text {reg }}$, is isomorphic to the semigroup S (i.e., the morphism $s \in S \mapsto s \in(S)_{\text {reg }}$ is one-one).

The dual result holds for \bar{S}.

Proof. Let $s_{1}, s_{2} \in\langle S\rangle \subseteq(S)_{\text {reg }}$ and supose $\left(S_{1}\right) h \approx\left(s_{2}\right) h$; then $s_{1} \approx s_{2}$, which implies (by the proof of the claim " $S \leq S_{\approx}$ ") that $S_{1}=S_{2}$ (same element in the set S). Similarly: $\left(\bar{s}_{1}\right) h \approx\left(\bar{s}_{2}\right) h$ implies $s_{1}^{-1}=s_{2}^{-1}$, hence $s_{1}=s_{2}$.
2.16. Corollary. $S \leq(S)_{\text {reg }}$ and $\bar{S} \leq(S)_{\text {reg }}$.

Instead of the 'two-sided' relation \approx, we can define the 'one-sided' congruences \approx_{g} and \approx_{y} on $(S \cup \bar{S} \cup\{0\})^{+}$, as follows: $w_{1} \approx_{,} w_{2}$ iff
(1) $\left[\left(w_{1}\right) \varphi=0\right.$ or $\left.\left(w_{1}\right) \varphi^{*}=0\right]$ and $\left[\left(w_{2}\right) \varphi=0\right.$ or $\left.\left(w_{2}\right) \varphi^{*}=0\right]$, or
(2) neither w_{1} nor w_{2} ever act as the empty relation (neither on the left, in $S_{B^{*}}$, nor the right, in S_{B}, and $\left(w_{1}\right) \varphi=\left(w_{2}\right) \varphi$ in S_{B}.

The relation \approx_{2} is defined dually.
Remark. $\approx_{A}\left(\right.$ resp. $\left.\approx_{y}\right)$ can also be considered as a relation defined on S_{B} (resp. $\left.S_{B^{*}}\right)$ - instead of $(S \cup \bar{S} \cup\{0\})^{+}$.
2.17. Claim. \approx_{n} is a congruence on $(S \cup \bar{S} \cup\{0\})^{+}$, and on S_{B} (and dually for $\approx_{\text {, }}$). Denote $(S \cup \bar{S} \cup\{0\})^{+} / \approx_{n}\left(\approx S_{B^{\prime}} / \approx_{n}\right)$ by $S_{=_{*}}\left(\right.$ resp. $\left.S_{z_{z}}\right)$.

Proof. Same as for the previous claim, for S_{\approx}.
2.18. Corollary. $S_{z_{k}}$ and $S_{z_{y}}$ are homomorphic images of S_{z} (and hence of $(S)_{\text {reg }}$). Moreover, the homomorphisms are injective when restricted to the subsemigroup S (or the subsemigroup $\left\{s^{-1} \mid s \in S\right\}$).
2.19. Claim. $S_{\alpha_{g}}$ and $S_{z q}$ satisfy all the axioms (1)-(6). (The proof is the same as for S_{m}).
2.20. Claim. $\tilde{S}_{m}=\left(S_{\varepsilon_{q}} \times S_{z_{g}}\right)_{S \cup S \cup\{0\}}$ (the product in the category of semigroups generated by $S \cup S \cup\{0\}$, see $[1,1.6]$ for definitions).

Proof. To $[w]_{z} \in S_{z}$ asso ate $\left([w]_{z q},[w]_{z_{y}}\right) \in\left(S_{z_{q}} \times S_{z_{q}}\right)_{S \cup S \cup\{0\}}$.
If $[w]_{z}$ acts as 0 on the left or the right, then $[w]_{=}=[w]_{z_{q}}=[w]_{\approx_{y}}$.
If $[w]_{\approx}$ never acts as zero (left or right action), then $[w]_{x_{i f}}$ and $[w]_{\approx y}$ together determine $[\boldsymbol{w}\}$ ((by definition of \approx).

Finally we have the following commutative diagram:
2.25

2.22. Fact. The semigroups $S_{\approx}, S_{\approx q}, S_{\approx y}$ are regular. If S is finite, then they are finite and their subgroups divide subgroups of S.
(Recall the definition of semigroup division: A divides B, denoted $A<B$, iff some subsemigroup of B maps homomorphically onto A.)

Proof. Since $S_{z}, S_{z,}, S_{z_{y}}$ are homomorphic images of $(S)_{\text {reg }}$, the fact follows from the regularity of $(S)_{\text {reg }}$ - and, in the finite case, from Theorem 2.23 which will be given next.

Remark. $S_{=}$is not necessarily isomorphic to $(S)_{\text {reg }}$. For example if S is a finite monoid and its (unique) maximal J-class is a non-trivial group G (the 'group of units'), then $s^{-1} \in G \subseteq S$ (for $s \in G$); however in ($\left.S\right)_{\mathrm{reg}}, \bar{s} \ddagger S$ (as we shall prove later).
2.5. Properties of $(S)_{\mathrm{reg}}$, and of the embedding of $S \leq(S)_{\mathrm{reg}}$
2.23. Theorem. Let S be an unambiguous semigroup, and let $(S)_{\mathrm{reg}}$ be the semigroup constructed in Section 2.2 (and let 0 be the zero of $\left.(S)_{\mathrm{reg}}\right)$. Then $S \leq(S)_{\text {reg }}$ (Corollary 2.16), and $(S)_{\text {reg }}$ has the following properties:
(1) $(S)_{\text {reg }}$ is regular (Fact 2.4).
(2) The L (resp. R or J) -order or $(S)_{\text {reg, }}$, restricted to elements of S, is the L (resp. R or J) -order of S. (i.e., if $s_{1}, s_{2} \in S$ and $s_{1} \leq s_{2}$ in $(S)_{\text {reg }}$, then $s_{1} \leq s_{2}$ in S, where \leq stands for any one of \leq_{y}, \leq_{y} or \leq_{y}).
(3) Every D-class (resp. J-class) of $(S)_{\text {reg }}$, except the J-class $\{0\}$, contains one and only one D-class (resp. J-class) of S.

Precisely: a D-class of $(S)_{\mathrm{reg}}$ is obtained from the D-class of S which it contains, by "adding rows and columns" in the Green-Rees picture.

In particular this implies that an H-class of $(S)_{\mathrm{reg}}$ lies either entirely in S (and is an H-class of S), or does not intersect S.

This implies that every group of $(S)_{\text {reg }}$ is either a subgroup of S or a Schützenberger group of a non-reguiar D-class of S - and thus divides S.

And: if every non-regular H-class of S is a singleton, then every subgroup of $(S)_{\text {reg }}$ is isomorphic to a subgroup of S.
(4) If S is finite, then $(S)_{\mathrm{reg}}$ is finite. If S is finite- J-above, then $(S)_{\mathrm{reg}}$ is finite- J above except at zero (i.e., $\forall x \neq 0$ in $(S)_{\text {reg }}$, the set $\left\{w \in(S)_{\text {reg }} \mid w \geq, x\right\}$ is finite).

If S is infinite, then S and $(S)_{\text {reg }}$ have the same cardinaltiy.
(5) If S is torsion (resp. aperiodic, resp. bounded torsion satisfying $x^{a+b}=x^{a}$), then $(S)_{\text {reg }}$ is torsion (resp. aperiodic, resp. bounded torsion satisfying $x^{1+a+b}=x^{1+a}$).

Remark. The restriction that S be an unambiguous semigroup is not very strong, since by Theorem 2.1 we have: for any semigroup S there exists a semigroup \hat{S}_{A}^{+} such that $\eta: \hat{S}_{A}^{+} \rightarrow S$; \hat{S}_{A}^{+}is unambiguous and its non-regular H-classes are singletons; the morphism η preserves important properties of S, regarding the subgroups and regular elements; if S is finite (resp. finite- J-above), then so is \hat{S}_{A}^{+}.

Proof of 2.23. (1) We proved already in Corollary 2.16 that $S \leq(S)_{\text {reg }}$, and in Fact 2.4 that $(S)_{\text {reg }}$ is regular. That $S \leq(S)_{\text {reg }}$ also follows from Lemma 2.26 .
(3) We shal prove next that every D-class of $(S)_{\text {reg }}$, except the J-class $\{0\}$, contains elements of S. This will follow from:
2.24. Fact. Any non-zero element $x \in(S)_{\mathrm{reg}}$ is D-equivalent to the center $(\in S \cup \bar{S})$ of any normal form that represents x.

Proof. Let $w=s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{t}_{n-1} s_{n}$ with

$$
s_{1}>, t_{1}>{ }_{i n} s_{2}>, t_{2}>, \cdots>, t_{k-1} \geq{ }_{i} s_{k} \leq t_{k}<\cdots<s_{n-1}<, t_{n-1}<, s_{n},
$$

be a normal form representing $x \in(S)_{\text {reg }}, x \neq 0$. (If the center is in \bar{S}, the reasoning is almost identical.)

We claim that $x \equiv s_{1} s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k}$. The ordering \leq_{n} is obvious; the \geq_{A-} ordering is proved by induction on $n-k$ (i.e., the length of the part of w which is right of the center).

If $n-k=0$, then $x=s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k}$.
In general: since $t_{n-1}<f s_{n}$ and $s_{n-1}<t_{n-1}$, there exists $v, u \in S$ with $t_{n-1}=s_{n} u$ and $s_{n-1}=v t_{n-1}$. Then

$$
\begin{aligned}
x \cdot u & =s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \cdots s_{n-1} \bar{t}_{n-1} \underbrace{s_{n} \cdot u} \\
& =s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \cdots v t_{n-1} \cdot \bar{t}_{n-1} \cdot t_{n-1} \\
& =s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \cdots v \\
& =s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots s_{k} \cdots s_{n-1} .
\end{aligned}
$$

Thus, $x u$ is obtained from x by simply removing $\bar{t}_{n-1} \cdot s_{n}$; this implies $x u \geq_{*} x$. Moreover: $x \cdot u \leq_{X} x$. Hence $x u \equiv_{x} x$.

Proceeding inductively we obtain $x \equiv{ }_{j 1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k}$.
In a similar way one proves that $s_{1} \bar{t}_{1} s_{2} \bar{t}_{2} \cdots \bar{t}_{k-1} s_{k} \equiv_{y} s_{k}$. This proves that $x \equiv \sum_{k}$.
2.25. Corollary. Every non-zero D-class (hence every non-zero J-class) of (S) $)_{\mathrm{reg}}$, contains elements of S.

Proof. By the above fact, every element $x \in(S)_{\text {reg }}$, with $x \neq 0$, is D-equivalent (hence J-equivalent) to either an element of S or an element of \bar{S} (depending on the center of the normal forms representing x). But, by axiom (5), every element of \bar{S} is D-equivalent to an element of S.

Proof of 2.23 (contd). To prove part (2) of the theoren: and to show that every nonzero D (resp. J) -class of $(S)_{\text {reg }}$ contains at most one D (resp. J) -class of S, we use the following lemma:
2.26. Lemma. (1) The element 0 of $(S)_{\text {reg }}$ cannot be represented by any other normal form.
(2) For all $s_{1}, s_{2} \in S: s_{1} \neq \bar{s}_{2}$ in $(S)_{\text {reg }}$.
(3) Let $x \in(S)_{\text {reg }}$, with $x \neq 0$. Then all normal forms representing x lave the same length (as elements of the set $(S \cup \bar{S})^{+}$).
(4) if $s \in S \leq(S)_{\mathrm{reg}}$, then the only normal form representing s is s itself.

Proof. The lemma follows from the uniqueness of coded normal forms - and this is defined and proved in the Appendix.

Remark. By (3) of the lemma, a length function is defined for the elements of $(S)_{\text {reg }}$. Clearly: for $x, y \in(S)_{\text {reg }}$: length $(x y) \leq \operatorname{length}(x)+$ length (y).
2.27. Fact. Let $s_{1}, s_{2} \in S$, and let \leq stand for one of $\leq_{y}, \leq_{n}, \leq_{y}$; let \equiv stand for one of $\equiv_{y}, \equiv_{y}, \equiv_{y}, \equiv_{y}$. Then

$$
\begin{array}{lll}
s_{1} \leq s_{2} \text { in }(S)_{\mathrm{reg}} & \text { iff } & s_{1} \leq s_{2} \text { in } S ; \\
s_{1} \equiv s_{2} \text { in }(S)_{\mathrm{reg}} & \text { iff } & s_{1} \equiv s_{2} \text { in } S .
\end{array}
$$

Proof. We consider the case of \leq_{y}; the other ones are very similar.
If $s_{1} \leq_{y} s_{2}$ in ($\left.S\right)_{\text {reg }}$, then either $s_{1}=s_{2}$ (and then $s_{1} \leq_{y} s_{2}$ in S) or there exists $x \in(S)_{\text {reg }}$ with $s_{1}=x s_{2}$. By the above lemma: $x \neq 0$. So x is of the form $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots$ $\bar{y}_{n-2} x_{n-1} \bar{y}_{n-1} x_{n}$ with $x_{1}>y_{y} y_{1}>x_{2}>y_{2}>\ldots<{ }_{n} x_{n-1}<y_{1} y_{n-1}<n x_{n}$.

Since $s_{1} \neq 0$ we have, by the above lemma: $y_{n-1} \geqslant, x_{n} s_{2}$ (otherwise $x \cdot s_{2}=0$ in (S $)_{\text {reg }}$). If $y_{n-1}<{ }_{n} x_{n} \cdot s_{2}$ or if x_{n} or \bar{y}_{n-1} is the center of x, then $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \ldots$ $y_{n-2} x_{n-1} y_{n-1} x_{n} s_{2}$ is a normal form. Otherwise $y_{n-1} \geq_{n} x_{n} \cdot s_{2}$ and $\left(\exists u \in S^{1}\right) y_{n-1} \cdot u=$ $x_{n} s_{2}$; moreover $(\exists v \in S) x_{n-1}=v y_{n-1}$ since $x_{n-1}<y_{y} y_{n-1}$. So

$$
\begin{aligned}
x s_{2} & =x_{1} y_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-2} v \underbrace{y_{n-1} \bar{y}_{n-1} y_{n-1}}_{y_{n-1}} u \\
& =x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-2} v \\
& =x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-2} v x_{n} s_{2} .
\end{aligned}
$$

Again $y_{n-2} \geqslant v x_{n} s_{2}$ (otherwise $x \cdot s_{2}=0$ in $(S)_{\text {reg }}$). If $y_{n-2}<x v x_{n} s_{2}$ or if x_{n-1} or \bar{y}_{n-2} is the center of x, then $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-2} v x_{n} s_{2}$ is a normal form. Otherwise we continue, inductively. Finally, there exists $i(<n)$ such that $s_{1}=x s_{2}=$ $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-i} t s_{2}$, for some $t \in S^{1}$, and $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-i} t s_{2}$ is a non-zero normal form (i.e., $y_{n-i}<t t s_{2}$, or: $y_{n-i} \geq_{i} t s$ and \bar{y}_{n-i} or $t s_{2}$ is the center of $x s_{2}$).

However, by Lemma 2.26 the element $s_{1} \in S$ is itself its unique normal form representation; hence the normal form $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots \bar{y}_{n-i} t s_{2}$ must actually be equal to $t s_{2}$. Hence $s_{1}=t s_{2}$ with $t \in S^{1}$, i.c., $s_{1} \leq_{y} s_{2}$ in S.
2.28. Corollary. Every D (resp. J, R, L) -class of $(S)_{\text {reg }}$ contains at most one D (resp. J, R, L) -class of S.

This corollary together with Corollary 2.25 implies that every non-zero D (resp. J) -class of $(S)_{\text {reg }}$ contains one and only one D (resp. J) -class of S.

Proof of 2.23 (contd.). To finish the proof of part (3) of the theorem we need the following:
2.29. Fact. Let $s, t \in S$, and let $x \in(S)_{\text {reg }}$ be such that $s \leq x, t \leq, x$ in $(S)_{\text {reg }}$. Then x is an element of S.

Proof. Let $x_{1} \bar{y}_{1} x_{2} \bar{y}_{2} \cdots x_{n-1} \bar{y}_{n-1} x_{n}$ be a normal form representing x (since $s \leq_{n} x \ldots$, we cannot have $x=0$).

We have $s \leq_{x} x$ and $t \leq_{y} x$; if $s=x$ or $t=x$, then $x \in S$. In the other case: there exist non-zero elements $u, v \in(S)_{\text {reg }}$ such that $s=x u$ and $t=v x$.

Then the normal form representation of $v x$ is of the form $w \bar{y}_{h} x_{h+1} \cdots x_{n-1} \bar{y}_{n-1} x_{n}$, where $\boldsymbol{w \in}(S)_{\text {rcg }}$ and $\bar{y}_{h} x_{h+1} \cdots x_{n-1} \bar{y}_{n-1} x_{n}$ is the part of x that is right of the center (including the center if center $=\bar{y}_{h} \in \bar{S}$ and $y_{h}<x_{h+1}$). This follows from an inductive reasoning that is very similar to those used in the proofs of previous properties of normal forms.

However, since $t \in S$, the normal form $0 x$ must have length $=1$ (by Lemma 2.26). Hence the part $\bar{y}_{h} x_{h+1} \cdots \bar{y}_{n-1} x_{n}$ does not exist, and x is of the form $x_{1} y_{1} \cdots \bar{y}_{h-1} x_{h}$ with $x_{1}>y y_{1}>{ }_{n} \cdots>_{f} y_{n-1} \geq_{k} x_{h}$. Hence, in particular, the center of the normal form representing x is $x_{h} \in S$.

By a similar reasoning, this time using $s \leq x$, (hence $s=x_{1} \bar{y}_{1} \cdots x_{h} w^{\prime}$) one shows that the part of x which is left of the center is empty: hence x is equal to its center $x_{h} \in S$. So $x \in S$.
2.30. Coroliary. If $s \in S, x \in(S)_{\text {reg }}$ and $s \leq \pi x$ in (()$_{\text {reg }}$, then $x \in S$.

From this corollary it follows that every H-class of ($S)_{\text {reg }}$ which intersects S lies entirely witnin S. Moreover this will then be an H-class of S (by Fact 2.27).

From Fact 2.29 it follows that the Green-Rees picture of a non-zero D-class Δ of ($S)_{\text {reg }}$ is ottained by taking the unique D-class δ of S that Δ contains, and adding rows and columns: δ will appear as a full rectangle within Δ-as displayed in Fig. 3.

Fig. 3.

If the H-classes $h_{1}, h_{2} \subseteq S$ belong to the D-class $\delta \subseteq S$ and if the H-class H of $\Delta \subseteq(S)_{\text {reg }}$ is $\equiv_{s} h_{1}$ and $\equiv_{y} h_{2}$ in $(S)_{\text {reg }}$, then $H \subseteq \delta$, by Fact 2.29.

The statements on the groups of $(S)_{\text {reg }}$ follow easily now.
Proof of 2.23 (4). That $(S)_{\text {reg }}$ is finite if S is finite follows from the normal form representation.

If S is infinite, then $(S)_{\text {reg }}$ has the same cardinality as S, since $S \leq(S)_{\text {reg }}$, and $(S)_{r e g}$ is a homomorphic image of the free semigroup $(S \cup \bar{S} \cup\{0\})^{+}$, which has the same cardinality as S.

Suppose now that S is finite-J-above. To show that for every non-zero element $x \in(S)_{\text {reg }}$ the set $J\left(\geq x\right.$ in $\left.(S)_{\text {reg }}\right)=\left\{w \in(S)_{\text {reg }} \mid w \geq_{y} x\right.$ in $\left.(S)_{\text {reg }}\right\}$ is finite, it is enough
to show that $(\forall s \in S)$: the set $J\left(\geq s\right.$ in $\left.(S)_{\text {reg }}\right)$ is finite (since by Corollary $2.25, x$ is \equiv, to an element in S).

Let $w \in(S)_{\text {reg }}-\{0\}$ be such that $w \geq_{y} s$ in $(S)_{\text {reg }}$. So, there exist $w_{1}, w_{2} \in(S)_{\text {reg }}$ such that $w_{1} w w_{2}=s$. Let $u \in S \cup \bar{S}$ be the center of w (in some representation by a normal form). Then it follows from the definition of normal forms, that u (or \bar{u}) is \geq_{y}-above the center of $w_{1} w w_{2}$; moreover the center of $w_{1} w w_{2}$ must be equal to s (by Lemma 2.26).

Thus we proved that if $w \geq_{f} s$ in $(S)_{\text {reg }}$, where $s \in S, w \in(S)_{\text {reg }}-\{0\}$, then the center of w is $s_{k} \in S$ or $\bar{s}_{k} \in \bar{S}$ with $s_{k} \geq_{y} s$.

Hence, since S is finite- J-above, there are only finitely many possible choices for centers of elements $w \in(S)_{\text {reg }}$ such that $w \geq_{y} s$. Moreover, by the shape of normal forms, there are only finitely many elements in $(S)_{\text {reg }}$ with a given center if S is finite- J-above (recall that the components of a normal form satisfy $\cdots>_{y}>_{A}>_{4} \cdots \geq$ center $\leq \cdots<_{4}<x<\cdots$).

This shows that for every element $s \in S$, the set $\left\{w \in(S)_{\text {reg }} / w \geq_{y} s\right.$ in $\left.(S)_{\text {reg }}\right\}$ is finite; hence the same holds true for any element $x \in(S)_{\text {reg }}, x \neq 0$ (as mentioned earlier).

Remark. If S is infinite, the element 0 has infinitely many elements \geq,-above (since $\forall s \in S: s \geq_{f} 0$ in ($\left.S\right)_{\text {reg }}$).

This proves the theorem.

Remark. By the theorem, unambiguous semigroups are 'close' to regular ones.
Conversely, if S is regular (and A is a set of generators) then $\hat{\hat{S}}_{A}$ and \hat{S}_{1}^{\prime} are unambiguous, and regular (this was observed by J. Rhodes).
(Proof. $\widehat{S}_{A}^{\mathscr{Z}}$ has unambiguous L-order, \hat{S}_{A}^{R} has unambiguous R-order; moreover, the canonical morphism $\eta ; \hat{S}_{A}^{Y, h} \rightarrow \hat{S}_{A}^{\prime,}$ is an R^{*}-morphism, which implies that η preserves the R-structure of regular semigroups. Hence, if S is regular ($\Rightarrow \hat{S}_{A}^{A}$ regular), then x^{2} $\hat{S}_{A}^{i / R}$ has also an unambiguous R-order). See also [1].

2.6. Preservation of (bounded) torsion. Length of products

2.6.1. Torsion and bounded torsion

2.30. Proposition. If S is torsion (resp. aperiodic), then $(S)_{\text {reg }}$ is torsion (resp. aperiodic).

More precisely: Suppose every element s of S satisfies one of the identities $s^{a+b}=s^{a}$, where (a, b) ranges over some subset X of $\mathbb{N} \times \mathbb{N}$; then every element $w \in(S)_{\text {reg }}$ satisfies one of the identities $w^{1+a+b}=w^{1+a}$, where still (a, b) ranges over the set X.

In particular, if S is bounded torsion satisfying the identity $x^{a+b}=x^{a}$ (for a fixed
pair (a, b)), then $(S)_{\text {reg }}$ is also bounded torsion and satisfies the identity $x^{1+a+b}=$ x^{1+a}.

Remark. We are still assuming that S is unambiguous. If S is not unambiguous, then by Theorem 2.1: if S is torsion (every element of S satisfying some torsion identity $x^{a+b}=x^{a},(a, b) \in X$ for a certain set $X \subseteq \mathbb{N} \times \mathbb{N}$), then S_{A}^{+}is torsion (with the same set of torsion identities).

Proof of 2.30. Assume every element s of S satisfies an identity $s^{a+b}=s^{a}$, for $(a, b) \in X$ (where X is a given subset of $\mathbb{N} \times \mathbb{N}$, depending only on S).

Let us first prove the proposition for elements $w \in(S)_{\text {reg }}$ of length $0,1,2$ or 3 .
The element 0 of ($S)_{\text {reg }}$ trivially satisfies any identity of the form $x^{1+a+b}=x^{1+a}$ (no matter what set (a, b) is taken from). Also, if an element $s \in S \leq(S)_{\text {reg }}$ satisfies $s^{a+b}=s^{a}$, then it also satisfies $s^{1+a+b}=s^{1+a}$. This takes care of elements of length 0 or 1 .

Assume the length of w is 2 . Then w is of the form $a \cdot \overline{b a}$, or $b a \cdot \bar{a}$ or $\bar{a} \cdot a b$, or $\overline{a b} \cdot a$ (since we must have L, resp. R-comparability). We shall only consider the case $w=a \cdot \overline{b a}$, since the other ones are dual.

If a 虔, $b a$, then $w^{2}=0$; thus $w^{2}=w^{3}=\cdots=w^{n}$ (for any n), hence w satisfies any identity of the form $w^{1+h+k}=w^{1+h}$ (for any h, k).

If $a \sum_{,} b a$, then either $a \geq_{b} b a$ or $a<b a$.
If $a \geq, b a$, then $\left(\exists c \in S^{1}\right) b a=a c$. Hence

$$
\begin{aligned}
w^{2} & =a \overline{b a} a \overline{b a}=a \overline{a c} a \overline{b a}=a \bar{c} \bar{a} a \bar{a} \bar{b} \\
& =a \bar{c} \bar{a} \bar{b}=a \overline{b a c}=a \overline{b^{2} a} \quad \text { since } a c=b a .
\end{aligned}
$$

More generally: $w^{n}=\bar{a} \overline{b^{n} a}$, as is easy to check. Therefore, if S is torsion (resp. aperiodic), w will be torsion (resp. apericdic); and if $b \in S$ satisfies the identity $x^{h+k}=x^{h}$, then w will satisfy the same identity, hence also the identity $x^{1+h+k}=$ x^{1+h}.

The case $a<b a$ cannot arise if S is a torsion semigroup, as follows from the next lemma.
2.31. Lemma. If S is a torsion semigroup, then it is impossible to have $a<n b a$ or $a<{ }_{3} a b$. (This lemma expresses the fact that torsion semigroups have tie so-called 'stability' property.)

Proof. If $a<{ }_{f} b a$, then $\left(\exists c \in S^{1}\right) a=b a c$; hence $(\forall n>0) a=b^{n} a c^{n}$. Hence: $b a=b^{n+!} a c^{n}, \forall n \geq 0$. If S is torsion, there exist $h, k \geq 1$ with $c^{h}=c^{n+k}$. Therefore $b a=b^{h+1} a c^{h}=b^{h+1} a c^{h+1} c^{k-1}=a c^{k-1}$ (since $b^{n} a c^{n}=a$, $\forall n$). So $b a=a c^{k-1}$, where $c^{k-1} \in S^{1}$. This however contradicts the strictness of $a<k b a$. The case $a<{ }_{4} a b$ is treated similarly.

Proof of 2.30 (contd.). We could now directly proceed to the inductive step.

However it is useful to deal with the case of length three to see how the torsion bound increases.

Length $=3$: The element w has the form $a b c$ of any of its dual forms. Then if $c a$ 表, b or $c a \neq y^{\prime} b$ we have $w^{2}=0$, so $w^{1+h+k}=w^{1+h}$ for any $h, k>0$.

If $c a \geq_{y} b, c a \geq_{y} b$ then $\left(\exists x, y \in S^{1}\right) b=c a x=y c a$. Then

$$
\begin{aligned}
w^{2} & =a \bar{b} c a \bar{b} c=a \overline{c a x} c a \overline{y c a} c=a \bar{x} \overline{c a} c a \overline{c a} \bar{y} c \\
& =a \bar{x} \overline{c a} \bar{y} c=a \overline{y c a x} c=a \overline{c a x^{2}} c \quad \text { since } y c a=c a x .
\end{aligned}
$$

More generally $w^{n}=a \overline{\operatorname{cax}^{n}} c$. Hence if S is torsion (resp. aperiodic), then w is torsion (resp. aperiodic), and if $x \in S$ satisfies the identity $x^{h+k}=x^{h}$, then w satisfies that same identity, hence also $w^{1+h+k}=w^{1+h}$.

If $c a \leq b, c a \leq b$ then $\left(\exists x, y \in S^{1}\right) c a=b x=y b$. Now $w^{2}=a \bar{b} c a \bar{b} c$. And:

$$
\begin{aligned}
w^{3} & =a \bar{b} c a \bar{b} c a \bar{b} c=a \bar{b} y b \bar{b} b x \bar{b} c \\
& =a \bar{b} y b \times \bar{b} c=a \bar{b} b x^{2} \bar{b} c .
\end{aligned}
$$

In general: $w^{n}=a \bar{b} b x^{n-1} \bar{b} c$. So, if S is torsion (resp. aperiodic), then w is torsion, resp. aperiodic. However, if $x \in S$ satisfies $x^{h+k}=x^{h}$, then w satisfies $w^{1+h}=w^{1+h+k}$. The other cases ($c a \leq, b, c a>_{, k} b$, etc.) cannot arise if S is torsion (by the above lemma).

Assume w has length $m, m \geq 3$. Let w be of the form

where L is the left side of w, R is the right side of w, and c is the center $(\in S \cup \bar{S})$.
If $w^{2}=0$ then, as already remarked earlier, w will satisfy any equation $w^{1+h+k}=w^{1+h}$, with $h, k>0$.

So, we will assume from here on that $w^{2} \neq 0$. Moreover, for $n \geq 2$ we can write $w^{n}=L(c R L)^{n-1} c R$. To show that w satisfies an identity $w^{1+h+k}=w^{1+h}$, it is therefore enough to show that $c R L c$ can be written as $u c$ where u is an element of $(S)_{\text {reg }}$ of length ≤ 2. Then indeed $w^{n}=L u^{n-1} c R$, and we showed already that every element of length ≤ 2 satisfies a torsion identity of $S: u^{h+k}=u^{k}$; that way we obtain: $w^{1+h+k}=w^{1+h}$. The proposition will now follow from the following:
2.32. Claim. $c R L c$ can be written in the form $u c$, where u has length at most 2 .

To prove the claim we have to analyze various cases. First we consider the situation where R (or, dually, L) is empty. So:

Four cases arise, according as celongs to S or S, and the left-most coordinate of L belongs to S or \bar{S}.

Case (A): $c \in S$, and the left-most coordinate of L is $X_{1} \in \bar{S}$. Then

Recall that we assume $w^{2} \neq 0$; hence $c \sum_{y} x_{1}$. Also, since $L c$ is a normal form: $x_{1}>_{,} x_{2}>y>c$. Hence, since S is torsion (hence stable - or use the lemma proved in this section): $c<\psi_{y} x_{1}$. Let $a \in S$ be such that $x_{2}=x_{1} a$ (since $x_{1}>_{n} x_{2}$). Then, by reducing:

Thus: $L c$ has been replaced by a normal form of smaller length.
Case (B): $c \in S$, and the left-most coordinate of L is $x_{1} \in S$. Then

(using a similar reasoning as in case (1), since $w^{2} \neq 0$ and $x_{3}=b x_{2}<y_{2}$, etc.; here x_{3} could actually be c itself, if $w=L c R=L c$ has length 3). Again $i c$ has been replaced by a normal form of smaller length.

Cases (C) and (D) (where $c \in S$) are dual to cases (A) and (B).
Finally (still in the situation where R is empty), applying cases (A) and (B) (induction on the length of $L c$) we obtain: $c R L c=c L c$ has length one and can be written as $u c$ (with $u \in S$ if $c \in S$; and $u \in \bar{S}$ if $c \in \bar{S}$).

The case where L is empty is dealt with similarly.
We now consider the situation where neither L nor R are empty, and we shall, by applying reductions, replace $L c$ or $c R$ by normal forms of smaller length.

Again 4 cases occur according as the left-most coordinate of L and the right-most coordinate of R belong to S or to \bar{S}.

Case (1): The right-most coordinate of R is $x_{1} \in S$, and the left-most coordinate of L is $\bar{y}_{1} \in \bar{S}$. Then

Since $w^{2} \neq 0$, we have $x_{1} \geqslant_{4} y_{1}$. Assume $x_{1} \geq_{4} y_{1}$ (the other case is dual); let $x_{2}=x_{1} a$ (x_{2} could be c itself). Then

So $c R$ has been replaced by a normal form of smaller length.
Case (2): The right-most coordinate of R is $x_{1} \in S$, and the left-most coordinate of L is $y_{1} \in S$. Then

So, $c R$ has been replaced by a normal form of smaller length, while $L c$ has been replaced by $x_{1} L c$ which is a word that has the same length $L c$, but which still has to be raduced.

If $x_{1} y_{1}>_{y}, y_{2}$, then $x_{1} L c$ is already reduced. Assume $x_{1} y_{1} \leq{ }_{y} y_{1}$; then by applying to

the same reasoning as for the situation

(cases (A), (B), where R is empty), we make the string shorter and shorter. In the end two cases can occur:

Case (2a): $x_{1} L c$ is finally reduced to a normal form

Case (2b): $x_{1} L c$ reduces to a normal form

(undcr the conditions of case (2) this can only happen if $c \in \bar{S}$); here $a<{ }_{f} c$. (i.e. c will no longer be the center of the new normal form).

If case (2b) ever occurs we shall have:

Then, applying again the reasoning of cases (A) and (B) (where this time the equivalent of " L "' is empty), R^{\prime} will be replaced by shorter and shorter strings, and finally

$$
\text { cRLc }=c \mid \prod_{\text {a }}^{a}
$$

So we can write $c R L c=u c$, taking

$$
u=\left.c\right|_{a^{\prime}} ^{a} \text { (length 2) }
$$

If case (2b) never occurs, we alternately apply cases (1) and (2a) and make L and R shorter ... until one of L or R disappears (length 0). Then we are back in case (A) or (B). So here $c R L c$ has length one (see cases (A) and (B)), and $c R L c=u c$ (u of length 1).

Furiher cases occur, when the right-most coordinate of R is $\bar{x}_{1} \in \bar{S}$, but these cases are dual to cases (1) and (2).

This proves the claim, and hence the proposition.

2.6.2. Bound on the length of products

The reasoning that proves that bounded torsion etc. is preserved (when we go from S to $(S)_{\text {reg }}$) can be generalized. If w_{1}, w_{2} are two elements of $(S)_{\text {reg }}$, we can give a good upper bound of the length of $w_{1} w_{2}$ (when represented by a normal form). This product formula connects the two "dimensions" that normal forms have: the length (number of coordinates, alternatingly in S and \bar{S}), and the 'depth' (still to be defined) of the center coordinate (see Fig. 4).

Fig. 4.

In the case of stable semigroups, the J-order plays the role of the depth-order. Recall that a semigroup is 'stable' iff the following holds: let $a \leq, b$ (resp. \leq_{i}); then $a<_{y} b$ (resp. $<_{x}$) iff $a<_{g} b$.

Let $l(\cdot)$ denote the length function; let $w_{1}=L_{1} c_{1} R_{1}$ and $w_{2}=L_{2} c_{2} R_{2}$ be elements of ($S)_{\text {reg }}$ (where L, R, c denote respectively the left side, the right side, the center).
2.33. Proposition. Assume S is a stable semigroup. Then:
(1) If $c_{1}>{ }_{f} c_{2}$, then $l\left(w_{1} w_{2}\right) \leq l\left(w_{1}\right)+l\left(c_{2} R_{2}\right)$.
(2) If $c_{1} \not{ }_{y} c_{2}$, and if $c_{1} R_{1}=c_{1} R_{1}^{\prime} R_{1}^{\prime \prime}$, where R_{1}^{\prime} is the set of those coordinates x of R_{1} for which $x>_{y} c_{2}$, then:

$$
l\left(w_{1} w_{2}\right)=l\left(L_{1} c_{1} R_{1}^{\prime}\right)+l\left(c_{2} R_{2}\right) .
$$

Proof. Part (2) of the proposition is obtained by iterating part (1). The proof of part (1) is very similar (case analysis) to the proof of preservation of bounded torsion.

If S is not stable, then the depth condition " $c_{1}>_{f} c_{2}$ " is to be replaced with the following:

$$
\left(\forall \alpha, c_{1} \geq_{f} \alpha\right)\left(\forall x, x \geq_{f} c_{2}\right): \quad \alpha x_{,} x \text { and } \alpha>, x .
$$

It can be checked that if S is stable, these two conditions are equi lent.
For arbitrary semigroups one could define: b is deeper than a iff

$$
(\exists \alpha, \beta): \quad b \leq_{y} \beta \ll_{n} \text { or }<_{y} \alpha \leq_{y} \alpha .
$$

(If S is stable this is equivalent to $b<_{q} a$.) Weaker definitions of depth could be devised, and the proposition would still hold.

2.7. Further properties, and variations of the construction $(S)_{\text {reg }}$

2.7.1. Unambiguity except at zero

Recall the definition of unambiguity (Section 2.1). More generally, we define that an element s is L-unambiguous iff $\forall x, y:\left[x \geq_{y} s, y \geq_{y} s\right] \Rightarrow x \sum_{y} y$. Similarly we define ' R-unambiguous' and 'unambiguous' (both L and R-unambiguous). 'Ambiguous' means 'not unambiguous'.

One can show easily that the set of L (resp. R) -ambiguous elements of a semigroup forms a left (resp. right) ideal.

If a semigroup contains a zero, then this zero is always both L and R-ambiguous.

Definition. A semigroup is unambiguous except at zero iff it is unambiguous, or if it contains a zero and all non-zero elements are unambiguous.

We mentioned earlier (in the first remark of Section 2.2) that if an element $s \in S$ is L or R-ambiguous, then s is identified with 0 in $(S)_{\text {reg }}$. It will follow from the Appendix of this paper that unambiguous elements of S are kept distinct in $(S)_{\text {reg }}$, It follows that in order to have $S \leq(S)_{\text {reg }}$ (with no elements of S identified in ($S)_{\text {reg }}$), it is enough to assume that S is unambiguous, except at zero (here we assume that if S has a zero, this element will also be used as the zero of $(S)_{\text {reg }}$).

In fact more is true:
All the properties of $(S)_{\text {reg }}$ proved so far (and those that will be proved in the Appendix) hold if we only assume that S is unambiguous except at zero.

In that case, if S has a zero, no new zero has to be added to ($S)_{\text {reg }}$ (but the one of S can be used).

If S has a zero 0 but is not unambiguous, except-at-zero, then $\hat{S}_{A}^{+} /(0) \eta^{-1}$ is unambiguous except at zero. (Notation: $\eta: \hat{S}_{A}^{+} \rightarrow S$ is the canonical morphism (see Section 2.1); (0) η^{-1} is an ideal of \hat{S}_{A}^{+}, and $\hat{S}_{A}^{+} /(0) \eta^{-1}$ is the Rees quotient over that ideal).

2.7.2. Green relations of $(S)_{\text {reg }}$

The J-order, and the D-relation

2.34. Fact. Let w_{1} and w_{2} be elements of $(S)_{\text {reg }}$, represented by normal forms. Let w_{1}, w_{2} have respective centers c_{1}, c_{2}; if c_{1} (or c_{2}) belongs to \bar{S}, we write $c_{1}=\bar{s}_{1}$ (or $\left.c_{2}=\bar{s}_{2}\right)$; if $c_{1}\left(\right.$ or $\left.c_{2}\right)$ belongs to S, we take $c_{1}=s_{1}\left(\right.$ or $\left.c_{2}=s_{2}\right)$. Then:

$$
\begin{array}{lll}
w_{1} \leq y w_{2} \text { in }(S)_{\mathrm{reg}} & \text { iff } & s_{1} \leq y s_{2} \text { in } S . \\
w_{1} \equiv, w_{2} \text { in }(S)_{\mathrm{reg}} & \text { iff } & s_{1} \equiv s_{2} \text { in } S .
\end{array}
$$

So, the \leq_{y}-order and the D-relation are determined by the center of any normal form representation of the elements of $(S)_{\mathrm{reg}}$ (whereby one can even ignore whether the center belongs to S or \bar{S}).

Proof. From Fact 2.24 we know that any element of $(S)_{\mathrm{reg}}$ is D-equivalent to its center (in any normal form representation); also $\bar{s} \equiv, s$. Moreover, by Corollary 2.28, two elements of $(S)_{\text {reg }}$ are not D-equivalent if their centers are not D-equivalent (for the D-order of S). The fact then follows.

The L, R, and H orders

The expression of the L, R, and H orders of $(S)_{\text {reg }}$ in terms of normal forms can only be given by using the coding of normal forms. We know (see Fact 2.5) that formally different normal forms may represent the same element of $(S)_{r e g}$. The coding transforms such normal forms into each other, and conversely, if two normal forms represent the same element of ($S)_{\text {reg }}$ they can be coded into each other. This coding is described in the Appendix (see the proof of Fact A.1.2), and it is also shown how unique representatives for all those normal forms representing the same element of $(S)_{\text {reg }}$ can be found. The unique representatives (called 'coded normal forms') are described in (A.1.1); their uniqueness was used in obtaining Lemma 2.26, and the lengthy proof of uniqueness occupies part A2 of the Appendix.

Recall that $(S)_{\text {reg }}$ is a homomorphic image of the free product of S and its reverse \bar{S}, with a zero added.

Definition. Let x_{1}, x_{2} be elements of the free product $A(*) B$ of iwo semigroups A and B. Then x_{1} is a right subsegment of x_{2} iff $x_{1}=x_{2}$ or $\left(\exists y \in A(* B) x_{2}=y x_{1}\right.$. (For example: if $x_{2}=a_{1} b_{1} a_{2} b_{2} a_{3}$, then $x_{1}=a b_{2} a_{3}$ is a right subsegment of x_{2} if $a_{2}=a$ or if $a_{2}=a^{\prime} a$ for some $a^{\prime} \in A$.)

Similarly, one defines left subsegments.
2.35. Fact. Let $w_{1}=L_{1} c_{1} R_{1}$ and $w_{2}=L_{2} c_{2} R_{2}$ be elements of $(S)_{\text {reg }}$, represented by coded normal forms (L, R, c respectively denote the left side, the right side, the center). Then $w_{1} \geq_{\mathscr{y}} w_{2}$ in $(S)_{\text {reg }}$ iff $c_{1} R_{1}$ is a right subsegment of $c_{2} R_{2}$ (when $c_{1} R_{1}, c_{2} R_{2}$ are considered as words belonging to the free product of S and $\left.\bar{S}\right)$.

Equivalently: Let $w_{1}=L_{1} c_{1} R_{1}, w_{2}=L_{2} c_{2} R_{2}$ be representations by normal forms (not necessarily coded). Then $w_{1} \geq_{y} w_{2}$ in ($\left.S\right)_{\text {reg }}$ iff $c_{1} R_{1}$ can be transformed by the coding producedure into $c_{1}^{\prime} R_{1}^{\prime}$ which is a right subsegment of $c_{2} R_{2}$ (as words in the free product of S and \bar{S}).

The dual statement describes the R-order of $(S)_{\mathrm{reg}}$ in terms of left subsegments.
The H-order is obtained by combining the L and the R-order.
In particular we have (for coded normal forms):

$$
w_{1} \equiv w_{2} \quad \text { iff } \quad R_{1}=R_{2} \text { and } c_{1} \equiv_{2} c_{2}(\text { in } S \text { or } \bar{S}),
$$

$$
\begin{array}{ll}
w_{2} \equiv w_{2} & \text { iff } \quad L_{1}=L_{2} \text { and } c_{1} \equiv_{n}(\text { in } S \text { or } \bar{S}), \\
w_{1} \equiv w_{2} & \text { iff } \quad L_{1}=L_{2}, R_{1}=R_{2} \text { and } c_{1} \equiv c_{2}(\text { in } S \text { or } \bar{S}) .
\end{array}
$$

Proof. We only consider $\geq_{\mathscr{L}}$ (the other cases are similar).
The second formulation (not using coded normal forms) is easily seen to be equivalent to the formulation using coded normal forms. We know (see the proof of Fact 2.24) that $w_{1} \equiv_{\mathscr{L}} c_{1} R_{1}$ and $w_{2} \equiv{ }_{y y} c_{2} R_{2}$ in ($\left.S\right)_{\text {reg }}$. Also, if w_{1}, w_{2} are coded normal forms, then $c_{1} R_{1}$ and $c_{2} R_{2}$ will be coded normal forms. Now, $c_{1} R_{1} \geq_{4} c_{2} R_{2}$ iff $c_{1} R_{1}=c_{2} R_{2}$ or ($\left.\exists u \in(S)_{\text {reg }}\right) u c_{1} R_{1}=c_{2} R_{2}$. After reducing, $u c_{1} R_{1}$ will be represented by a normal form

the part R_{1} of the normal form is in coded form already. If we completely code this normal form representing $u c_{1} R_{1}$, we will replace $x c_{1}$ by a representative of an L or R-class of S : if $c_{1} \in S$, then $x c_{1}(\epsilon S)$ will be replaced by an L-equivalent $z x c_{2}$ (see the coding procedure in A.1.2); if $c_{1}=\bar{s}_{1} \in S$ and $x=\bar{y} \in \bar{S}_{\text {, }}$, then $s_{1} y$ will be replaced by an R-equivalent element $s_{1} y z$ (so now $x c_{1}$ is replaced by $\bar{z} x c_{1}$). It could also happen that c_{1} belongs to the center of $u c_{1} R_{1}$; in that case no coding of c_{1} is necessary. After the coding is done, $u c_{1} R_{1}$ will still look like

Since this is equal to

we conclude (by uniqueness of coded normal forms) that $c_{1} R_{1}$ is a righ t subsegment of $c_{2} R_{2}$.

The converse (if $c_{1} R_{1}$ is a right subsegment of $c_{2} R_{2}$, then $c_{1} R_{1} \geq_{y} c_{2} R_{2}$) is immediate from the definition of the L-order.

An important consequence is:
2.36. Proposition. If S is unambiguous except at zero (which we assumed all along), then $(S)_{\text {reg }}$ is unambiguous except at zero.

Proof. This follows easily from the expression of the L and R order of ($S)_{\text {reg }}$ just given.

2.7.3. A variation of the construction $(S)_{\mathrm{reg}}$: New inverses for non-regular elements only

In the construction $(S)_{\text {reg }}$ we introduced the element $\overrightarrow{\mathcal{S}}$, which will be a rcgular inverse of s, no autter whether s is already regular (and has already inverses in S) or not.

We now give ? variation of the construction, and this time we introduce \bar{s} only if s is non-regulai (Remark. Even in this case we might still indirectly introduce new inverses for regular elements s, namely inverses of the form $s_{1} \bar{n}$ etc.)

Let S be a semigroup that is unambiguous (or unambiguous except at zero). Let N be the set of non-regular elements of S, and let $\bar{N}=\{\bar{n} \mid n \in N\}$ be a set that is disjoint from S. Let 0 be an additional element that belongs neither to S nor \bar{N}.

We define ($S)_{\text {reg, } N}$ to be the semigroup presented by the generators $S \cup \bar{N} \cup\{0\}$ and the following relations:
(1) $s_{1} s_{2}=s_{3}$ if $s_{1} \cdot s_{2}=s_{3}$ in S
(where - denotes the multiplication of S).
(2) $\bar{n}_{1} \tilde{n}_{2}=0$ if $n_{1}, n_{2} \in N$.
(3) 0 is a zero (i.e. $0 s=s 0=0 \bar{n}=\bar{n} 0=0$).
(4) $\vec{n}_{1} s \bar{n}_{2}=0$ if $\left.n_{1}<\right\rangle_{y} s n_{2}$, and $n_{1}, n_{2} \in N, s \in S$.
(5)(A) $n \bar{n} n=n$ if $n \in N$,
(B) for every $n_{1}, n_{2} \in N, s \in S$ with $n_{1} \equiv{ }_{A} s \geq_{y} n_{2}$ or $n_{1} \leq{ }_{n} s \equiv n_{2}$:
$\bar{n}_{1} s \bar{n}_{2}=\overline{u s v}$, where $u, v \in S$ are such that $n_{1}=s v, n_{2}=u s$.
(6)(L) $s \bar{n}=0$ if s 美 n,
(R) $\bar{n} s=0$ if s 美, $n(s \in S, n \in N)$.

Comments on the relations. The relations for $(S)_{\text {reg, } N}$ are similar to those for $(S)_{\text {reg }}$. The differences come from the fact that we want to avoid elements \bar{s} where s is regular in S. This directly explains relation (2): if n_{1}, n_{2} are non-regular, it could happen that $n_{2} n_{1}$ is regular; hence we must not set $\bar{n}_{1} \bar{n}_{2}=\bar{n}_{2} n_{1}$. Even if $n_{2} n_{1} \in N$ we define $\bar{n}_{1} \bar{n}_{2}=0$ (otherwise the following could happen: suppose $n_{1}, n_{2}, n_{3}, n_{2} n_{1}, n_{3} n_{2} n_{1} \in N$, but $n_{3} n_{2} \notin N$; then $\bar{n}_{2} \bar{n}_{3}=0$, so $\bar{n}_{1} \bar{n}_{2} \bar{n}_{3}=0$; but also $\bar{n}_{1} \bar{n}_{2} \bar{n}_{3}=\overline{n_{2} n_{1}} \bar{n}_{3}=\overline{n_{3} n_{2} n_{1}}$). Relation (4) can be explained similarly.

Relation (5B) (together with the other relations) will enable us to represent elements of $(S)_{\mathrm{reg}, N}$ by normal forms, just like for $(S)_{\mathrm{reg}}$. Intuitively we would want

$$
\bar{n}_{1} s \bar{n}_{2}=\overline{s u s} \bar{u} s=\bar{v} \bar{s} s \bar{s} \bar{u}=\bar{v} \bar{s} \bar{u}=\bar{u} s v ;
$$

this computation is not allowed in ($S)_{\text {reg, } N}$, so (5B) simply postulates the result. Notice also that $u s v \in N$ under the given conditions: if $n_{1} \equiv_{i d} s$, then $u n_{1} \equiv_{i j} u s$ ($=n_{2}$); but $u n_{1}=u s v$, so $u s v \equiv_{\neq n} n_{2}(\in N)$. Similarly, if $n_{2} \equiv s$, then $u s v \equiv, n_{1}$ and, of course, nonregularity is preserved under \equiv_{2}, and \equiv_{n}.

As for ($S)_{\text {reg }}$, we can code normal forms of $(S)_{\text {reg iv }}$ to representatives (in L and R-classes; see the Appendix). Incleed the following property of $(S)_{\text {reg }}$ also holds for ($S_{\text {reg, } N}$.
2.37. Fact. If $n \in N$ cnd $\alpha n \equiv_{y} n$, then $\overline{\alpha n t} \cdot \alpha n=\overline{n t} \cdot n$ (for any $t \in S$ such that $n f \in N$). Dually: if $n \beta \equiv_{,} n$, then $n \beta \cdot \overline{\operatorname{tn} \beta}=n \cdot \overline{\operatorname{tn}}$.

Proof.

$$
\begin{aligned}
\overline{\alpha n t} \cdot \alpha n & =\overline{\alpha n t} \cdot \alpha n \tilde{n} n=\overline{\alpha n t} \cdot \alpha n \cdot \overline{x \alpha a n} \quad \text { where } x \alpha n=n, n \equiv_{y} \alpha n \\
& =\overline{x \alpha n t} \cdot n \quad \text { by (5B), since } \alpha n t \leq_{i x} \alpha n \equiv_{\mathscr{y}} x \alpha n .
\end{aligned}
$$

The proof of the second statement is similar (dual).
As in the case of ($S)_{\text {reg }}$ (see Appendix) one can show that coded normal forms are unique in ($S)_{\text {reg, }} N$.

In fact all the properties of $(S)_{\text {reg }}$ that are summarized in Theorem 2.23 hold for $(S)_{\text {reg } N}$.

All the proofs are similar. Concerning the regularity of $(S)_{\text {reg, } N}$: if $S_{1} \bar{n}_{1} S_{2} \bar{n}_{2} \cdots$ $s_{k} n_{k} s_{k+1}$ is a normal form representing an element of ($\left.S\right)_{\text {reg, } N}$ one can check that the following word represents a regular inverse for that element: $\hat{s}_{k+1} n_{k} \hat{s}_{k} \cdots$ $n_{2} \hat{s}_{2} n_{1} \hat{s}_{1}$, where $\hat{s}_{i}=\bar{s}_{i}$ if $s_{i} \in N$ and $\hat{s}_{i}=$ any regular inverse of s_{i} in S, if s_{i} is regular in S.

Appendix

Unique representation of elements of $(S)_{\text {reg }}$ by coded normal forms

A1. Coded normal forms

We saw (in Fact 2.2) that every element of ($S)_{\text {reg }}$ can ive represented by 0 or by a word of $(S \cup \bar{S})^{+}$in normal form. We also saw (in Fact 2.5) that this representative is not necessarily unique; in this section we shall use Fact 2.5 to code the normal forms, and in Section A2 we shall show that these coded normal forms are unique.

Recall Fact 2.5 , where we proved:
if $a s \equiv s, \quad$ then $\overline{a s} \cdot a s=\bar{s} s$,
if $s b \equiv_{\vec{F}} s$, then $s b \cdot \overline{s b}=s \bar{s}$.
Let l (resp. r) be a representative of the L-class (resp. R-class) of s; then by Fact 2.5: $\bar{s} s=I \cdot l$ and $s \bar{s}=r \cdot \bar{r}$. This leads to the following definition:
A.1.1. Definition (coded normal form). Assume that for every L (resp. R) -class of S a representative has been chosen. This set of representatives is kept fixed in the sequel.

A coded normal form is either 0 or a normal form in $(S \cup S)^{+}$of one of the following two kinds (a) or (b):
(a) (center in S): $\left(r_{1}\right) T_{1} r_{2} T_{2} \cdots \Gamma_{k-1} c_{k} \bar{r}_{k} \cdots l_{n-1} \bar{r}_{n-1}\left(l_{n}\right)$

(Again, as in Fact 2.2, the fact that r_{1} and I_{n} are in parentheses indicates that these elements may or may not be present.)
(b) (center in \bar{S}): $\left(r_{1}\right) I_{1} r_{2} I_{2} \cdots r_{k} \bar{c}_{k} l_{k+1} \cdots l_{n-1} \bar{r}_{n-1}\left(l_{n}\right)$

with the supplementary condition that $r_{1}, r_{2}, \ldots, r_{n-1}$ are among the fixed representatives of the R-classes of S, and $l_{1}, l_{2}, \ldots, l_{n}$ are among the fixed representatives of the L-classes of S. No new condition is put on $c_{k}(\epsilon S)$.
A.1.2. Fact. Assume fixed representatives of the L and R-classes of S have been chosen. Every element of $(S)_{\mathrm{reg}}$ can be represented by a coded nortral form

Proof. We show that every normal form is equivalent to a soded normal form -by induction on the lengths of the sides (left, resp. right of the center) of the given normal forms. The two sides are dealt with independently.

First, norinal forms of length 0 or 1 are already coded (since their sides are empty).

Coding of the right side: suppose the following normal form is given:

$$
x=s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{t}_{n-1} s_{n} ;
$$

let $s_{n} \equiv l_{n}$ (representative of L-class); so $s_{n}=u l_{n}\left(u \in S^{1}\right)$; also $t_{n-1}<{ }_{n} s_{n}$, so $t_{n-1}=s_{n} b_{n}=u l_{n} b_{n}$ (for some $b_{n} \in S^{1}$). Hence

$$
\begin{aligned}
x & =s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \cdot \overline{u l_{n} b_{n}} \cdot u l_{n} \\
& =s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{b}_{n} \cdot \overline{u l_{n}} u l_{n} \\
& =s_{i} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{b}_{n} I_{n} l_{n} \quad \text { (by Fact 2.5(a)) } \\
& =s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots s_{n-1} \bar{l}_{n} b_{n} l_{n} .
\end{aligned}
$$

Thus, the right-most component of the right side has been coded.
Remark 1. The result does not depend on the choice of u and b_{n} such that $s_{n}=u l_{n}$ and $t_{n-1}=s_{n} b_{n}$. Indeed, u is eliminated in the result, and if $t_{n-1}=s_{n} b_{n}=s_{n} b_{n}^{\prime}$ then (letting $l_{n}=d s_{n} \equiv y_{4} s_{n}$) we have $l_{n} b_{n}=d s_{n} b_{n}=d s_{n} b_{n}^{\prime}=l_{n} b_{n}^{\prime}$.

Remark 2. The result is again a normal form, i.e., $s_{n-1}<l_{1} l_{n} b_{n}<l_{n} l_{1}$. Indeed $t_{n-1} \equiv \equiv_{\neq 1} l_{n} b_{n}$ (since $s_{n} \equiv l_{n} \Rightarrow s_{n} b_{n} \equiv \mathscr{y}_{f} l_{n} b_{n}$, and $t_{n-1}=s_{n} b_{n}$), so $s_{n-1}<l_{f} l_{n}$ ($\equiv_{t} t_{n-1}$).

A!so $l_{n} b_{n} \leq{ }_{A} l_{n}$, and $l_{n} b_{n} \neq l_{n} l_{n}$, otherwise $(\exists \alpha) l_{n} b_{n} \alpha=l_{n}$, which would imply $u l_{n} b_{n} \alpha=u l_{n}$, hence (since $s_{n}=u l_{n}$): $s_{n} b_{n} \alpha=s_{n}$, hence (since $s_{n} b_{n}=t_{n-1}$): $t_{n-1} \alpha=s_{n}$; this however contradicts $t_{n-1}<_{B} s_{n}$. (End of Remark 2.)

The same procedure can be continued:

$$
\begin{aligned}
x & =s_{1} \bar{l}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{l}_{k} \cdots \bar{t}_{n-2} s_{n-1} \overline{l_{n} b_{n}} l_{n} \\
& =s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots \bar{t}_{n-2} \cdot a_{n} l_{n} b_{n} \overline{l_{n} b_{n}} l_{n},
\end{aligned}
$$

where $s_{n-1}=a_{n} l_{n} b_{n}$ for $a_{n} \in S$ (since $s_{n-1}<l_{n} l_{n} b_{n}$);

$$
=s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots \bar{t}_{n-2} \cdot a_{n} r_{n-1} v \cdot \overline{r_{n-1} v} \cdot l_{n}
$$

where r_{n-1} is the representative of the R-class of $l_{n} b_{n}: r_{n-1} \equiv l_{n} b_{n}, r_{n-1} v=l_{n} b_{n}$ for $v \in S^{1}$; etc.

$$
\left.=s_{1} \bar{t}_{1} \cdots \bar{t}_{k-1} s_{k} \bar{t}_{k} \cdots \bar{t}_{n-2} \cdot a_{n} r_{n-1} \bar{r}_{n-1} l_{n}, \quad \text { (by Fact } 2.5(\mathrm{~b})\right) .
$$

We can again observe (as in the above Remarks 1 and 2) that the result does not depend on the choice of v and a_{n} (but only on s_{n-1} and $l_{n} \cdot b_{n}$), since v is eliminated, and if $s_{n-1}=a_{n} l_{n} b_{n}=a_{n}^{\prime} l_{n} b_{n}$ then, (letting $r_{n-1}=l_{n} b_{n} h \equiv_{n} l_{n} b_{n}$) we have $a_{n} r_{n-1}=a_{n} l_{n} b_{n} h=a_{n}^{\prime} l_{n} b_{n} h=a_{n}^{\prime} r_{n-1}$.

And, the result is a normal form, i.e., $t_{n-2}<a_{n} r_{n-1}<r_{n-1}<l_{n}$. Indeed $s_{n-1} \equiv a_{n} r_{n-1}$ (since $l_{n} b_{n}=r_{n-1} \Rightarrow a_{n} l_{n} b_{n} \equiv a_{n} r_{n-1}$, and $s_{n-1}=a_{n} l_{n} b_{n}$); hence $t_{n-2}<a_{n} r_{n-1}\left(\equiv \equiv_{n-1}\right)$. Also $a_{n} r_{n-1} \leq r_{y-1}$, and $a_{n} r_{n-1} \neq y r_{n-1}$; otherwise ($\exists y) y a_{n} r_{n-1}=r_{n-1}$, which would imply $y a_{n} r_{n-1} v=r_{n-1} v$ hence (since $r_{n-1} v=l_{n} b_{n}$): $y a_{n} l_{n} b_{n}=l_{n} b_{n}$; thus (since $a_{n} l_{n} b_{n}=s_{n-1}$): $y s_{n-1}=l_{n} b_{n}$ - which contradicts $s_{n-1}<l_{2} l_{n} b_{n}$ established in Remark 2. Finally $r_{n-1}<l_{n} l_{n}$ since $r_{n-1} \equiv l_{n} b_{n}$ and $I_{n} b_{n}<I_{n}$ (established in Remark 2).

Continuing inductively, we code the whole right side of the normal form. In the same way, the left side is coded.

Also, the result does not depend on which side was coded first.
If the center of the normal form is in \bar{S} the same proof applies.
This proves Fact A1.2.
Remark. The above coding of normal forms is probably related to the 'Zeiger coding' (see [4]).

A2. Uniqueness of coded normal forms

Proposition. Every element of $(S)_{\mathrm{reg}}$ can be represented by one and only one coded normal form (for a given choice of representatives of the L and R-classes of S). (Remark. We still assume S is unambiguous.)

That every element of $(S)_{\text {reg }}$ can be represented by at least one coded normal form was proved in A.1 - always keeping a fixed set of representatives of the L and R-classes of S.

To show uniqueness we let $(S)_{\text {reg }}$ act on a certain set of states (transformation semigroup) and show that elements which are represented by different coded normal forms act differently on those states. More precisely:

Choose as state set Q the set of all coded normal forms (including 0), together with an identity element. Let the eiements of $S \cup \bar{S}$ act in the way corresponding to the multiplication in ($S)_{\text {reg }}$ (this will be described precisely). Then, take the semigroup $\langle S \cup \tilde{S} \cup\{0\}\rangle_{F(Q \rightarrow Q)}$, generated in $F(Q \rightarrow Q)$ by the transformations SUSU\{0\}.

We show that $\langle S \cup \bar{S} \cup\{0\}\rangle_{F}$ satisfies all the axioms (1)-(6) (this will be very tedious) and hence (by Fact 2.13) is a homomorphic image of ($S)_{\text {reg }}$. Thus we consider ($S)_{\text {reg }}$ as acting on Q (in a not necessarily faithful svay).

Finally we show that elements of $(S)_{\text {reg }}$ which are represented by different coded normal forms act differently on Q. This shows that $(S)_{\text {reg }}$ acts faithfully on Q, and that different coded normal forms represent different elements of $(S)_{\text {reg }}$ - which proves uniqueness of coded normal forms.

Remark. Lemma 2.26, which was used for Theorem 2.23, is an immediate corollary of the above proposition (and of the way a normal form is transformed into a coded normal form - see Fact A.1.2).

(a) States and action

States. As just mentioned, we choose as state set Q the set of all coded normal forms (including the zero), together with a new element I (which will play the role of an identity or a start state). We still use a fixed set of representatives of L and R-classes of S.

Graphical representation of the states: We still use the 'arrow picture' of Fact 2.2, but for notational reasons we draw the arrows horizontally, starting at the bottom. Upward pointing arrows now point to the right (forward direction) (see Section 2.2), downward pointing arrows now point to the left (backward direction). So states have the form
(A2.a.1)

Example. The (coded) normal form $a \bar{b} c$ (with $a>_{y} b<{ }_{y} c$) is represented as

(in Fact 2.2 it was drawn as

The reason why this notation is more convenient will appear when we define and study the action on the states.
(A2.a.2) A more explicit notation for states which we will use is

representing the coded normal form (with center $\in S$):

$$
q=r_{m} I_{m} \cdots I_{n+1} c_{n} \bar{r}_{n} \cdots l_{2} \bar{r}_{2} l_{1} \bar{r}_{1} l_{0}
$$

with

$$
r_{m}>_{y} l_{m}>_{n} \cdots<l_{n+1} \underbrace{\underbrace{}_{n} c_{n} \leq y}_{\text {not both } \equiv} r_{n}<\cdots \ll_{\#} l_{2}<y r_{2}<_{n} l_{1}<_{y} r_{1}<_{g} l_{0}
$$

and with

$$
\begin{aligned}
& l_{0}=x_{0}, \quad r_{1}=x_{0} b_{1}, \quad l_{1}=a_{1} x_{0} b_{1}, \ldots, \\
& l_{m-1}=\prod_{n-1}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{n-1} b_{i}, \quad r_{n}=\prod_{n-1}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{n} b_{i}, \quad c_{n}=\prod_{n}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{n} b_{i}
\end{aligned}
$$

Since we will define the actions on the right, only the right side of the state (coded normal form) will have to be written down in detail.

Action on the states. We shall define the action on Q of the elements $s \in S, \bar{s} \in \bar{S}$ and 0 , and then take the semigroup generated by these actions in $F(Q \rightarrow Q)$. The action of s (resp. $\bar{S}, 0$) is denoted by (s) (resp. (\bar{S}), (0)).

First,

$$
\mathbb{V} q \in Q: \quad q \cdot(0)=0
$$

And,

$$
F s \in S: \quad I \cdot(s)=s, \quad I \cdot(s)=\bar{s} \quad(I \text { is the identity }) .
$$

In general: if q is any cocied normal form, then $q \cdot(s)=((q s)$ norm $)$ code, where ($q s$) norm denotes a particular normal form (described below) corresponding to the element $q s \in(S)_{\text {reg }}$; and ($q s$) norm) code denotes the coded normal form obtained from the normal form ($q s$) rorm by using the procedure of A.1.2.

Remark. If $q=0$, then $q(s)=0$.
Similarly define $q \cdot(\bar{s})=((q \bar{s})$ norm $)$ code.

Nermalization. The normalization $q s \rightarrow(q s)$ norm and $q \bar{s} \rightarrow(q \bar{s})$ norm will now be described more explicitly (where $s \in S, q$ is a (coded) normal form).

Let $q=r_{m} I_{m} \cdots r_{n+1} I_{n+1} c_{n} \bar{r}_{n} \cdots l_{2} \bar{r}_{2} l_{1} \bar{r}_{1} I_{0} \in Q$ be a coded normal form (with center $\in S$ for example; the case where center $\in \bar{S}$ is dual) with

$$
\begin{aligned}
& l_{0}=x_{0}, \quad r_{1}=x_{0} b_{1}, \quad l_{1}=a_{1} x_{0} b_{1}, \ldots, \\
& l_{k-1}=\prod_{k-1}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{k-1} b_{i}, \quad r_{k}=\prod_{k-1}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{k} b_{i}, \ldots, \\
& r_{n}=\prod_{n-1}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{n} b_{i}, \quad c_{n}=\prod_{n}^{1} a_{i} \cdot x_{0} \cdot \prod_{1}^{n} b_{i}
\end{aligned}
$$

Then

$$
\text { (qs) norm }=r_{m} \bar{T}_{m} \cdots \bar{l}_{n+1} c_{n} \bar{r}_{n} \cdots \bar{r}_{k+1} a_{k} \cdots a_{1} x_{0} s
$$

if $r_{k+1}<a_{k} \cdots a_{1} x_{0} s$, and $r_{k} \geq a_{k-1} \cdots a_{1} x_{0} s, \ldots, r_{1} \geq x_{0} s$, arrow pictures of these conditions:
(A2.a.3)

(qs) norm $=r_{m} I_{m} \cdots I_{n+1} a_{n} \cdots a_{1} x_{0} s$ if $r_{n} \geq \prod_{n-1}^{1} a_{i} x_{0} s, \ldots, r_{1} \geq x_{0} s$,
$(q s)$ norm $=0 \quad$ otherwise.
Hence ($q s$) form is again a normal form, whose left side is coded but whose right side is not necessarily in coded form.

$$
\begin{aligned}
& \text { (} q \bar{s} \text {) norm }=r_{m} \bar{I}_{m} \cdots T_{n+1} c_{n} \bar{r}_{n} \cdots l_{1} \bar{r}_{1} l_{0} \bar{s} \quad \text { if } l_{0} \leq s, \\
& \text { (q六) norm }=r_{m} \bar{l}_{m} \cdots \bar{l}_{n+1} c_{n} \bar{r}_{n} \cdots l_{k} \overline{s b_{1} \cdots b_{k}} \quad \text { (where } n-1 \geq k \geq 1 \text {) } \\
& \text { if } l_{k}<, s b_{1} \cdots b_{k} \\
& \text { and } l_{k-1} \geq_{y} s b_{1} \cdots b_{k-1}, \ldots, l_{1} \geq_{y} s b_{1}, l_{0} \geq_{t} s \text {, }
\end{aligned}
$$

arrow picture of these conditions:

$$
\begin{aligned}
& \text { if (as before) } l_{n-1} \geq_{\mathscr{q}} s b_{1} \cdots b_{n-1}, \ldots, l_{1} \geq_{\mathscr{L}} s b_{1}, l_{0} \geq_{q} s, \\
& \text { and either } c_{n}<y s b_{1} \cdots b_{n} \text { or } l_{n+1} \gg_{n} c_{y} s b_{1} \cdots b_{n} \text {, } \\
& (g s) \text { norm }=r_{m} T_{m} \cdots r_{n+1} \bar{u} s b_{1} \cdots b_{n} \\
& \text { if } l_{n-1} \geq_{\mathscr{P}} s b_{1} \cdots b_{n-1}, \ldots, l_{1} \geq_{y} s b_{1}, l_{0} \geq_{y} s, \\
& \text { and } I_{n+1} \equiv_{\mathscr{R}} c_{n} \geq_{\varphi} s b_{1} \cdots b_{n} \text { (with } u c_{n}=s b_{1} \cdots b_{n} \text {), } \\
& \text { (qs) norm }=0 \quad \text { otherwise. }
\end{aligned}
$$

The case where the center of q is in \bar{S} is dual to the one described.
Remark. If we consider $s, q,(q s)$ norm, $q s$ as elements of ($S)_{\text {reg }}$, then it follows from the above description that $q s \cong(q s)$ norm in $(S)_{\text {reg }}$.

Graphical representation of the actions (if result $\neq 0$, and if $n>k$, i.e. $a_{k} \cdots a_{1} x_{0} s$ is not the center of the resulting state) is shown in Fig. 5.

Coding of the right side of a normal form. We mentioned that if q is a coded normal form, then ($q s$) norm and ($q s$) norm are again normal forms, whose left side is coded but whose right side is usually not in coded form. So, in order to obtain $q \cdot(s)$ and $q \cdot(\bar{s})$ we still have to describe explicitly how ($q s$) norm and ($q \bar{s}$) norm are coded. (A2.a.4) Let q be a normal form whose left side is coded. So

$$
q=r_{m} I_{m} \cdots I_{n+1} x_{n} y_{n} \cdots x_{2} y_{2} x_{1} y_{1} x_{0}
$$

with

$$
r_{m}>_{y} l_{m} \gg_{\mathscr{H}} \cdots>_{\mathscr{L}} l_{n+1} \geq_{n} x_{n} \leqslant_{\mathscr{L}} y_{n}<\mathscr{g} \cdots<_{\mathscr{H}} x_{2}<\mathscr{y} y_{2}<x_{1} x_{1}<\mathscr{L} y_{1}<r_{n},
$$

and $l_{m}, r_{m}, \ldots, r_{n+1}, I_{n+1}$ are among the chosen representatives of L (resp. R) -classes of $S_{\text {, }}$ and $y_{1}=x_{0} b_{1}, x_{1}=a_{1} x_{0} b_{1}, \ldots, y_{n}=a_{n-1} \cdots a_{1} x_{0} b_{1} \cdots b_{n}, x_{n}=a_{n} \cdots u_{1} x_{0} b_{1} \cdots b_{n}$.
(F,ere we consider a normal q whose center is in S; the case where the center is in \bar{S} is treated dually.; Then (see the coding procedure in A1.2):

$$
\text { (q) code } \left.=\left[\begin{array}{c}
\overbrace{0} \\
{\left[\begin{array}{l}
\geq_{1} x_{0} b_{1}\left(<_{q}\right) \lambda_{0} x_{0} b_{1} \\
\underbrace{}_{0} \\
\ldots
\end{array}\right]}
\end{array}\right] \text { code }\right]
$$

where $x_{0} \equiv_{y} l_{0}\left(=\right.$ representative of L-class of $\left.x_{0}\right)$, and $\lambda_{0} \in S^{1}$ is such that $\lambda_{0} x_{0}=l_{0}$.

$$
\text { -s) norm }=\left[\begin{array}{l}
\left(a_{k} \cdots a_{1} x_{0} s=\right) \\
\frac{a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \quad u}{\substack{a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1} \\
\cdots \\
\cdots}}
\end{array}\right]
$$

- $\bar{s}) n o r m=\left[\begin{array}{r}\left(=s b_{1} b_{2} \cdots b_{k}\right) \\ v_{\longleftrightarrow} \begin{array}{r}a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \\ a_{k} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}\end{array} \\ \begin{array}{cc}--- & - \\ -- & -\end{array}\end{array}\right]$

Fig. 5.
Remark. The element $\lambda_{0} x_{0} b_{1}$ does not depend on the choice of λ_{0} such that $\lambda_{0} x_{0}=l_{0}$ (since $\lambda_{0} x_{0} b_{1}=l_{0} b_{1}$).

Claim 1. $x_{0} b_{1} \equiv{ }_{\Psi} \lambda_{0} x_{0} b_{1}$.
Proof. $l_{0}=\lambda_{0} x_{0} \equiv{ }_{y} x_{0} \Rightarrow$ (multiplying by b_{1}): $\lambda_{0} x_{0} b_{1} \equiv x_{0} b_{1}$.

Corollary 1'. $a_{1} x_{0} b_{1}$ (<4) $\lambda_{0} x_{0} b_{1}$ holds.
Proof. Obviously $\lambda_{0} x_{0} b_{1}=l_{0} b_{1} \leq l_{0}$; if we had $\lambda_{0} x_{0} b_{1} \equiv l_{0}$, then (since $\lambda_{0} x_{0} \equiv x_{0}$ there exists $\lambda_{0}^{*}: \lambda_{0}^{*} \lambda_{0} x_{0}=x_{0}$) we would have $\lambda_{0}^{*} \lambda_{0} x_{0} b_{1} \equiv{ }_{g,} \lambda_{0}^{*} \lambda_{0} x_{0}$, thus $\lambda_{0} b_{1} \equiv x_{n}-$ which contradicts $x_{0} b_{1}<x_{n}$.

For the (-r)-relation: we have $a_{1} x_{0} b_{1}<y x_{0} b_{1}, x_{0} b_{1} \equiv_{4} \lambda_{0} x_{0} b_{1}$ (by the above claim). Hence $a_{1} x_{0} b_{1}<g \lambda_{1} x_{0} b_{1}$.

The codings can be continued inductively:
where $\lambda_{0} x_{0} b_{1}{ }_{3} r_{1}$ ($=$ the representative of the R-class of $\lambda_{0} x_{0} b_{1}$), and $\varrho_{1} \in S^{1}$ is such that $r_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1}$.

Remark. The element $a_{1} x_{0} b_{1} \varrho_{1}$ does not depend on the choice of ϱ_{1} such that $r_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1}$ (Indeed, if $r_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1}^{\prime}$, then multiplying by λ_{0}^{*} such that $\lambda_{0}^{*} \lambda_{0} x_{0}=x_{0}: \lambda_{0}^{*} r_{1}=x_{0} b_{1} \varrho_{1}=x_{0} b_{1} \varrho_{1}^{\prime}$, hence $\left.a_{1} x_{0} b_{1} \varrho_{1}=a_{1} x_{0} b_{1} \varrho_{1}^{\prime}\right)$.

Claim 2. $x_{0} b_{1} \equiv_{h} x_{0} b_{1} \varrho_{1}$. (Hence, multiplying by $a_{1}: a_{1} x_{0} b_{1} \equiv_{\oiint \rightarrow} a_{1} x_{0} b_{1} \varrho_{1}$.)
Proof. We have $\lambda_{0} x_{0} b_{1} \equiv_{;} r_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1}$. Multiply to the left by λ_{0}^{*} (such that $\left.\lambda_{0}^{*} \lambda_{0} x_{0}=\lambda_{0}^{*} l_{0}=x_{0}\right): x_{0} b_{1} \equiv \lambda_{0}^{*} r_{1}=x_{0} b_{1} \varrho_{1}$.

Claim 2'. The following strict relations hold:

$$
\left\{\begin{array}{c}
l_{0}\left(=\lambda_{0} x_{0}\right) \\
\left(\sum_{q}\right) \\
a_{1} x_{0} b_{1} \varrho_{1}\left(<_{q}\right) r_{1}\left(=\lambda_{0} x_{0} b_{1} \varrho_{1}\right) \\
\geq_{0} \\
a_{1} x_{0} b_{1} b_{2}
\end{array}\right\}
$$

Proof. (a) We obviously have $\lambda_{0} x_{0} b_{1} \varrho_{1} \leq \lambda_{0} x_{0}$. If we had $\lambda_{0} x_{0} b_{1} \varrho_{1} \equiv_{g} \lambda_{0} x_{0}$, then (multiplying by λ_{0}^{*} such that $\lambda_{0}^{*} \lambda_{0} x_{0}=x_{0}$): $x_{0} b_{1} \varrho_{1} \equiv_{\pi} x_{0}$. Hence, by the above claim: $x_{0} b_{1} \equiv_{6} x_{0} b_{1} \varrho_{1} \equiv_{A} x_{0}$; this contradicts the fact that $x_{0} b_{1}<9, x_{0}$, and proves $\lambda_{0} x_{0} b_{1} \varrho_{1}<\lambda_{0} x_{0}$.
(b) To show that $a_{1} x_{0} \dot{b}_{1} \varrho_{1}<_{\mathscr{G}} \lambda_{0} x_{0} b_{1} \varrho_{1}$, use Corolary $1^{\prime}: a_{1} x_{0} b_{1}<{ }_{\varphi} \lambda_{0} x_{0} b_{1}$, hence $a_{1} x_{0} b_{1} \varrho_{1} \leq \lambda_{7} \lambda_{0} x_{1} b_{1} \varrho_{1}$. If we had $a_{1} x_{0} b_{1} \varrho_{1} \equiv \equiv_{\mathscr{F}} \lambda_{0} x_{1} b_{1} \varrho_{1}$, multiply by ϱ_{1}^{*} such that (by Claim 2) $x_{0} b_{1} \varrho_{1} \varrho_{1}^{*}=x_{0} b_{1}$: then $a_{1} x_{0} b_{1} \equiv \lambda_{0} x_{0} b_{1}$, hence (by Claim 1: $\left.x_{0} b_{i} \#_{4} \lambda_{0} x_{0} b_{1}\right): a_{1} x_{0} b_{1} \equiv_{7} x_{0} b_{1}$, which contradicts the fact that $a_{1} x_{0} b_{1}<y x_{0} b_{1}$.
(c) To show that $a_{1} x_{0} b_{1} b_{2}<{ }_{1} a_{1} x_{0} b_{1} \varrho_{1}$ use Claim 2 , by which $a_{1} x_{0} b_{1} \varrho_{1} \equiv_{\#} a_{1} x_{0} b_{1}$; and it is given that $a_{1} x_{0} b_{1} b_{2}<a_{1} x_{0} b_{1}$.

This coding procedure can be continued inductively: multipliers $\lambda_{0}, \lambda_{1}, \ldots$, $\lambda_{n-1}, \varrho_{1}, \ldots, \varrho_{n}$ are introduced such that

$$
\begin{aligned}
& l_{0}=\lambda_{0} x_{0} \quad\left(\equiv_{y} x_{0}\right), \\
& r_{1}=\lambda_{0} x_{0} b_{1} \varrho_{1} \quad\left(\equiv_{\neq} \lambda_{0} x_{0} b_{1}\right), \\
& l_{1}=\lambda_{1} a_{1} x_{0} b_{1} \varrho_{1} \quad\left(\equiv_{y} a_{1} x_{0} b_{1} \varrho_{1}\right), \\
& r_{2}=\lambda_{1} a_{1} x_{0} b_{1} b_{2} \varrho_{2} \quad\left(\equiv_{\neq} \lambda_{1} a_{1} x_{0} b_{1} b_{2}\right),
\end{aligned}
$$

(A2.a.5)

$$
\begin{aligned}
& l_{k-1}=\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} \varrho_{k-1} \quad\left(\equiv_{f} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} \varrho_{k-1}\right), \\
& r_{k}=\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} b_{k} \varrho_{k} \quad\left(\equiv \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} b_{k}\right),
\end{aligned}
$$

for $1 \leq k \leq n$, where l_{k-1}, r_{k} are representatives of L (resp. R) -classes (in S); and $c_{n}=a_{n} \cdots a_{1} x_{0} b_{1} \cdots b_{n} \varrho_{n}$.
(A2.a.6) Fact. We have (q) code $=$

We have to prove that this is indeed a normal form, i.e., that for $1 \leq k<n$:

$$
\bigodot_{l_{k}\left(\bigcup_{k}\right) r_{k}}^{l_{k-1}}, \quad \text { and } \quad c_{n}\left(S_{2}\right) r_{n}
$$

For that we shall use the following claims:

(A2.a.7) Claim (${ }^{2}$).

$$
\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} \equiv \equiv_{y} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} \quad \text { for } 0<k<n
$$

Claim (@).

$$
a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} b_{k} \varrho_{k} \equiv_{g} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} b_{k} \quad \text { for } 0<k \leq n .
$$

Proof. Induction on k. (For $k=1$, see Claims 1 and 2 above.)
Claim λ. By definition of λ_{k-1} (see (A2.a.5)):

$$
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1}=\equiv_{4} a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1},
$$

and (inductively, assuming Claim ϱ for $k-1$);

$$
a_{k-2} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \equiv{ }_{g} a_{k-2} \cdots x_{0} \cdots b_{k-1}
$$

hence, there exists $\varrho_{k-1}^{*} \in S^{1}$ such that

$$
a_{k-2} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \varrho_{k-1}^{*}=a_{k-2} \cdots x_{0} \cdots b_{k-1}
$$

Now multiply the first line on the right by ϱ_{k-1}^{*}, and using the last line we obtain

$$
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} \equiv_{\mathscr{q}} a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

This proves Claim (λ).
Claim (@). By the definition (A2.a.5) of ϱ_{k};

$$
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k} \varrho_{k} \equiv \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

And (by Claim λ for $k-1$, which has just been proved):

$$
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} \equiv{ }_{y} a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

hence

$$
\left(\exists \lambda_{k-1}^{*} \in S^{1}\right) \lambda_{k-1}^{*} \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1}=a_{k-1} \cdots x_{0} \cdots b_{k-1} .
$$

Multiplying the first line to the left by λ_{k-1}^{*} and using the last line:

$$
a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \varrho_{k} \equiv_{\mathscr{R}} a_{k-1} \cdots x_{0} \cdots b_{k}
$$

This proves Claim (ρ).
Proof that l_{k} (<Q) r_{k}. By Claim (λ):

$$
r_{k}=\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1} b_{k} \varrho_{k} \equiv \equiv_{\mathscr{L}} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \varrho_{k},
$$

moreover $l_{k}=\lambda_{k} a_{k} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \varrho_{k}$. Hence $l_{k} \leq{ }_{\varphi} r_{k}$. We still must show $l_{k} \not \equiv_{f} r_{k}$. If $l_{k} \equiv{ }_{y} r_{k}$, then

$$
\lambda_{k} a_{k} a_{k-1} \cdots x_{0} \cdots b_{k} \varrho_{k} \equiv \equiv_{q} a_{k-1} \cdots x_{0} \cdots b_{k} \varrho_{k}
$$

Multiplying on the right by ϱ_{k}^{*} satisfying $a_{k-1} \cdots \cdots b_{k} \varrho_{k} \varrho_{k}^{*}=a_{k-1} \cdots \cdots b_{k}\left(\varrho_{k}^{*}\right.$ exists, since by Claim (ϱ), $a_{k-1} \cdots \cdots b_{k} \varrho_{k} \equiv_{\mathscr{G}} a_{k-1} \cdots \cdots b_{k}$) we obtain

$$
\dot{A}_{k} a_{k} a_{k-1} \cdots x_{0} \cdots b_{k} \equiv \equiv_{y} a_{k-1} \cdots x_{0} \cdots b_{k}
$$

And by Claim λ (for k):

$$
\lambda_{k} a_{k} \cdots x_{0} \cdots b_{k} \equiv{ }_{y} a_{k} \cdots x_{0} \cdots b_{k}
$$

Combining the last two lines:

$$
a_{k} a_{k-1} \cdots x_{0} \cdots b_{k} \equiv{ }_{\mathscr{f}} a_{k-1} \cdots x_{0} \cdots b_{k}
$$

This however contradicts the fact that $a_{k} a_{k-1} \cdots x_{0} \cdots b_{k}<_{2} a_{k-1} \cdots x_{0} \cdots b_{k}$ (which is given by the form of q).

Proof that $r_{k}\left(<_{9}\right) l_{k-1}$. By Claim (λ):

$$
r_{k}=\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \varrho_{k} \quad\left(\equiv_{2} a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \varrho_{k}\right)
$$

Moreover

$$
l_{k-1}=\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \quad\left(\equiv_{7} a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \text { by Claim } \lambda\right)
$$

By Claim $\varrho\left(\right.$ for $k-1$) there exists ϱ_{k-1}^{*} such that

$$
a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \varrho_{k-1}^{*}=a_{k-2} \cdots x_{0} \cdots b_{k-1}
$$

Hence

$$
r_{k}=\lambda_{k-1} a_{k-1} a_{k-2} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \varrho_{k-1}^{*} b_{k} \varrho_{k} \leq{ }_{k} l_{k-1}
$$

We must still show $r_{k} \not \equiv{ }_{\bar{\pi}} l_{k-1}$. Suppose we had $r_{k} \equiv{ }_{\beta} l_{k-1}$, i.e.,

$$
\begin{gathered}
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \varrho_{k} \equiv_{S} \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} \varrho_{k-1} \\
\|_{3} \text { (by Claim (} \varrho \text {), for } k \text {) } \quad \|_{l} \text { (by Claim (} \varrho \text {), for } k \cdot 1 \text {) }
\end{gathered}
$$

hence

$$
\lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \equiv_{g} \quad \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

By Claim (λ) (for $k-1$) there exists λ_{k-1}^{*} such that

$$
\lambda_{k-1}^{*} \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1}=a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

Hence (multiplying by λ_{k-1}^{*}):

$$
a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \equiv_{g} a_{k-1} \cdots x_{0} \cdots b_{k-1}
$$

This however contradicts the strict $<_{q}$ given by the form of q.
This proves that (q) code has indeed the form indicated in Fact (A2.a.6).
We can write (q) code in terms of " a 's and b 's" (cf. notation of (A2.a.2)) as follows:
(A2.a.7') By Claim λ (resp. ϱ) there exist λ_{k-1}^{*} (resp. ϱ_{k}^{*}) such that

$$
\text { for } 0<k<n: \quad \lambda_{k-1}^{*} \lambda_{k-1} a_{k-1} \cdots x_{0} \cdots b_{k-1}=a_{k-1} \cdots x_{0} \cdots b_{k-1},
$$

and

$$
\text { for } 0<k \leq n: \quad a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} \varrho_{k} \varrho_{k}^{*}=a_{k-1} \cdots x_{0} \cdots b_{k-1} b_{k} .
$$

Then denote $x_{0}^{*}=\lambda_{0} x_{0}, b_{1}^{*}=b_{1} \varrho_{1}$, and $a_{k-1}^{*}=\lambda_{k-1} a_{k-1} \lambda_{k-2}^{*}$ for $0<k<n, a_{n}^{*}=$ $a_{n} \lambda_{n-1}^{*}$; and $b_{k}^{*}=\varrho_{k-1}^{*} b_{k} \varrho_{k}$ for $0<k \leq n$. Then (as is easy to check):
(A2.a.8) $\quad x_{0}^{*}=l_{0}, \quad r_{1}=x_{0}^{*} b_{1}^{*} \quad\left(=\lambda_{0} x_{0} b_{1} \varrho_{1}\right) ;$

$$
\begin{aligned}
& l_{k-1}=a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k-1}^{*} \quad\left(=\lambda_{k-1} a_{k-1} \lambda_{k-2}^{*} \lambda_{k-2} a_{k-2} \lambda_{k-3}^{*} \cdots\right) \\
& \quad \text { for } 0<k<n ; \\
& r_{k}=a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k-1}^{*} b_{k}^{*} \quad \text { for } 0<k \leq n ; \\
& c_{n}=a_{n}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{n}^{*} .
\end{aligned}
$$

Hence we have (q) code $=$

Remark. Compare this with the form given in (A2.a.4); see also (A.a.2). This completes the description of the coding of the right side of a normal form \boldsymbol{q}.

Coding commutes with the actions. We shall now prove an important technical lemma.
(A2.a.9) Lemma ('Coding commutes with actions'). Let q be a normal form whose left side is in coded form, and let $s \in S, \bar{s} \in \bar{S}$. Then
(qs) norm code $=[((q)$ code) $s]$ norm code,
or equivalently:

$$
q \cdot(s)=((q) \operatorname{cod} e) \cdot(s)
$$

(if we define $q \cdot(s)=(q s)$ norm code); and ($q \bar{s})$ norm code $=[((q)$ code $) s]$ norm code, i.e., $q \cdot(\bar{s})=((q) \operatorname{code}) \cdot(\bar{s}))$.

Equivalently, the following diagrams commute:

Proof. We first consider the case of $q s$. We shall compute ($q s$) norm and [(q) code) $s]$ norm, and then show that a further coding makes both equal.

The normal form ($q s$) norm is described in (A2.a.3) - while [(q) code s] norm is obtained by first replacing each a_{i} and b_{j} (and x_{0}) in q by u_{i}^{*}, resp. b_{j}^{*} and x_{0}^{*} (as described in (A2.a.8)), and then applying definition (A2.a.3) to this new form. Thus we need the following claim:

Claim

$$
\begin{aligned}
& x_{0}^{*} s \leq_{k} x_{0}^{*} b_{1} \Leftrightarrow x_{0} s \leq x_{0} b_{1}, \\
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s \leq_{k} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k-1}^{*} b_{k}^{*} \Leftrightarrow \\
& a_{k-1} \cdots a_{1} x_{0} s \leq \leq_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k-1}^{-} b_{k}, \quad \text { for } 0<k \leq n, \\
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s>_{k} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1} \cdots a_{1} x_{0} s>_{k} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}, \quad \text { for } 0<k \leq n .
\end{aligned}
$$

Proof of Claim. Since

$$
r_{k}=a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*}=\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \varrho_{k}
$$

(by A2.a.5), and since (by Claim (@) of A2.a.7):

$$
a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} \varrho_{k} \equiv_{k} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}
$$

we have (multiplying the last relation on the left by λ_{k-1}):

$$
r_{k} \equiv \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}
$$

So

$$
\begin{aligned}
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s \leq_{n} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s \leq_{n} \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s>_{*} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s>_{*} \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}, \quad \text { for } 0<k \leq n .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s= & \lambda_{k-1} a_{k-1} \lambda_{k-2}^{*} \lambda_{k-2} a_{k-2} \lambda_{k-3}^{*} \cdots \lambda_{1} a_{1} \lambda_{0}^{*} \lambda_{0} x_{0} s \\
& =\lambda_{k-1} a_{k-1} a_{k-2} \cdots a_{1} x_{0} s .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s \leq_{\sharp} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} s \leq_{q} \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k} ;
\end{aligned}
$$

the last relation implies (by multiplying on the left by λ_{k-1}^{*}):

$$
a_{k-1} \cdots a_{1} x_{0} s \leq_{k i f} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}
$$

Also, this last relation implies (by multiplying now on the left by λ_{k-1}):

$$
\lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} s \leq_{1} \lambda_{k-1} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}
$$

Thus

$$
\begin{aligned}
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s \leq_{g} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1} \cdots a_{1} x_{0} s \leq_{g} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k},
\end{aligned}
$$

which is half of what was to be proved.
We still have to prove

$$
\begin{aligned}
& a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} s>_{;} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1} \cdots a_{1} x_{0} s>_{k-1} a_{k-1} a_{1} x_{0} b_{1} \cdots b_{k} .
\end{aligned}
$$

This will follow easily from

$$
\begin{aligned}
& a_{k-1}^{*}, \cdots a_{1}^{*} x_{0}^{*} s \geq_{n} a_{k-1}^{*} \cdots a_{1}^{*} x_{0}^{*} b_{1}^{*} \cdots b_{k}^{*} \Leftrightarrow \\
& a_{k-1} \cdots a_{1} x_{0} s \geq_{n} a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k},
\end{aligned}
$$

and the above (since $>_{A} \Leftrightarrow \geq_{\mathscr{A}} \& \Sigma_{\mathscr{A}}$). This however is proved exactly like the above (where we had $\leq_{\#}$ instead of \geq_{j}). This proves the claim.

From the above claim it follows that if q has the form given in (A2.a.4), then

if and only if $((q)$ code $\cdot s)$ norm $=$

Here we assume $n>k$ (i.e. $a_{k} \cdots a_{1} x_{0} s$ is not the center); the case $n=k$ is identical.
Finally, to prove Lemma (A2.a.9) we apply code to both forms. We have $a_{k} \cdots a_{1} x_{0} s \equiv_{\mathscr{L}} a_{k}^{*} \cdots a_{1}^{*} x_{0}^{*} s\left(=\lambda_{k} a_{k} \cdots a_{1} x_{0} s\right)$. [This holds because $\lambda_{k} a_{k} \cdots a_{1} x_{0} s \leq$ $a_{k} \cdots a_{1} x_{0} s$ and because $\lambda_{k}^{*} \lambda_{k} a_{k} \cdots a_{1} \cdot x_{0} s=\lambda_{k}^{*} \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} u$ for some $u \in S^{1}$ (since $a_{k-1} \cdots a_{1} x_{0} s \leq a_{k-1} \cdots a_{1} x_{0} b_{1} \cdots b_{k}$ by (A2.a.3)); $=a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} u$ (by the definition of λ_{k}^{*}, (A2.a.7')); $=a_{k} \cdots a_{1} x_{0} a$; hence $a_{k} \cdots a_{1} x_{0} s \leq \lambda_{k} a_{k} \cdots a_{1} x_{0} s$.] (If $n=k$, then $a_{k} \cdots a_{1} x_{0} s=a_{k}^{*} \cdots a_{1}^{*} x_{0}^{*} s$. .) Since $a_{k}^{*} \cdots a_{1}^{*} x_{0}^{*} s \equiv_{y} a_{k} \cdots a_{1} x_{0} s$, both have the same L-class representative l_{k}^{\prime}. Let λ_{k}^{\prime} be such that $l_{k}^{\prime}=\lambda_{k}^{\prime} \lambda_{k} a_{k} \cdots a_{1} x_{0} s$, and let $\lambda_{k}^{\prime \prime}=\lambda_{k}^{\prime} \lambda_{k}$; so $l_{k}^{\prime}=\lambda_{k}^{\prime \prime} a_{k} \cdots a_{1} x_{0} s$. Hence ($q s$) norm code $=$
and $((q \operatorname{code}) s)$ norm coa'e $=$
(by the description of the coding in (A2.a.4)). Moreover

$$
\lambda_{k}^{\prime \prime} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1}=\lambda_{k}^{\prime} \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \quad\left(\text { since } \lambda_{k}^{\prime \prime}=\lambda_{k}^{\prime} \lambda_{k}\right),
$$

and

$$
\lambda_{k}^{\prime} a_{k}^{*} \cdots a_{1}^{*} x_{1}^{*} b_{1}^{*} \cdots b_{k+1}^{*}=\lambda_{k}^{\prime} \cdot \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \varrho_{k+1} \quad \text { (by (A2.a.8)) }
$$

But

$$
\lambda_{k}^{\prime} \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \equiv \lambda_{k}^{\prime} \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \varrho_{k+1}
$$

(by Claim ϱ, (A2.a.7)); hence, continuing the coding, these two elements have the same R-class representative r_{k+1}^{\prime}.

Let ϱ_{k+1}^{\prime} be such that $r_{k+1}^{\prime}=\lambda_{k}^{\prime} \lambda_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \varrho_{k+1} \varrho_{k+1}^{\prime}$ (and let $\varrho_{k+1}^{\prime \prime}=$ $\varrho_{k+1} \varrho_{k+1}^{\prime}$). Hence ($q s$) norm code $=$

and ($(q$ code) $s)$ norm code $=$

where

$$
a_{k+1} \cdots x_{0} \cdots b_{k+1} \varrho_{k+1}^{\prime \prime}=a_{k+1} \cdots x_{0} \cdots b_{k+1} \varrho_{k+1} \varrho_{k+1}^{\prime}\left(\text { since } \varrho_{k+1}^{\prime \prime}=\varrho_{k+1} \varrho_{k+1}^{\prime}\right)
$$

and

$$
a_{k+1}^{*} \cdots x_{0}^{*} \cdots b_{k+1}^{*} \varrho_{k+1}^{\prime}=\lambda_{k+1} a_{k+1} \cdots x_{0} \cdots b_{k+1} \varrho_{k+1} \cdot \varrho_{k+1}^{\prime} ;
$$

and by Claim (A2.a.7), these two are L-equivalent (thus will be coded to the same L-representative).

Continuing the coding inductively (which is easy now) we obtain Lemma (A2.a.9) for the case $q s$ (the induction works out in the end, for c_{n} and c_{n}^{*}, since $\lambda_{n}=1 \in S^{1}$).

The case of $q \bar{S}$ is very similar, and the case where the center of q is in \bar{S} is dual. This proves (A2.a.9).

We are now ready to verify that all the Axioms (1)-(6) hold for $\langle S \cup \bar{S} \cup\{0\}\rangle_{F(Q)}$.
(b) Verification of the axioms (for $\langle S \cup \bar{S} \cup\{0\}\rangle_{F(Q)}$)

Axioms (3) and (4) (which state that (0) acts like a zero) hold trivially since $\forall q \in Q$: $q \cdot(0)=0$.

Axiom (5). We first show that for all $q \in Q, s \in S: q(s)=q(s) \cdot(\bar{s}) \cdot(s)$. If $q \cdot(s)=0$, then this certainly holds. So assume $q \cdot(s) \neq 0$. Suppose q and $(q s)$ norm have the form indicated in (A2.a.3); so

(assuming $k<n$; the reasoning is similar if $a_{k=n} \cdots a_{1} x_{0} s$ is the new center).
Next, let us compute $q(s)(\bar{s})(s)$: By Lemma (A2.a.9),

$$
q(s)(\bar{s})(s)=((q s) \text { norm } \cdot \bar{s}) \text { norm } \cdot s) \text { norm code }
$$

(coding done only once, at the end).
If (1) $a_{k} \cdots a_{1} x_{0} s<_{4} s$, or: if (2) $k=n$ (i.e., $a_{n} \cdots a_{1} x_{0} s$ is the center of (qs) norm) and $I_{n+1} \geq_{n} a_{n} \cdots a_{1} x_{0} s$, then

In both cases

$$
(((q s) \text { norm } \bar{s}) \text { norm } s) \text { norm }=(q s) \text { norm }
$$

(to compute (($(q s)$ norm $\bar{s})$ norm \bar{s}) norm from the above ($(q s)$ norm $\bar{s})$ norm, use (A2.a.3), where x_{0} is dropped, k is replaced by $1, F_{1}$ by s, and l_{1} by $a_{k} \cdots a_{1} x_{0} s$ etc.). Hence $q(s)=q(s)(s)(s)$ in these cases.

If (3) $a_{k} \cdots a_{1} x_{0} s \xi_{q} s, n>k$, then let b_{k+1}^{\prime} be such that $a_{k} \cdots a_{1} x_{0} s b_{k+1}^{\prime}=$ $a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1}$ (since $a_{k} \cdots a_{1} x_{0} s>_{k j} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1}$); then, since $a_{k+1} a_{k} \cdots x_{0} \cdots b_{k+1}<{ }_{y} a_{k} \cdots x_{0} \cdots b_{k+1}$ we have $a_{k+1}\left(a_{k} \cdots x_{0} s\right) b_{k+1}^{\prime}<\mathscr{L}\left(a_{k} \cdots x_{0} s\right) b_{k+1}^{\prime}$. Therefore by (A2.a.3):
($q s$ s) norm s) norm $\cdot s=$

$$
\begin{aligned}
& \left.=\left[\right] \cdot s\right] \text { norm code. }
\end{aligned}
$$

Moreover $s b_{k+1}^{\prime}<s$ (since if $s b_{k+1}^{\prime} \equiv \equiv_{n} s$, then $a_{k} \cdots x_{0} s b_{k+1}^{\prime} \equiv_{g_{k}} a_{k} \cdots x_{0} s$ which contradicts the fact that $\left.a_{k} \cdots x_{0} s b_{k+1}^{\prime}<a_{k} \cdots x_{0} s\right)$. Hence

$$
\begin{aligned}
& q(s)(\bar{s})(s)=(q s) \text { norm } \bar{s} \text { norm } s \text { norm code }
\end{aligned}
$$

However, by Fact 2.5, or by the proof of Fact (A1.2), this is equal to
since $a_{k} \cdots a_{1} x_{0} s \equiv{ }_{\varphi} s$. Hence (since $a_{k} \cdots a_{1} x_{0} s b_{k+1}^{\prime}=a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1}$), we have $q \cdot(s)=q \cdot(s)(s)(s)$.

If (4) $n=k$ (i.e. $a_{n} \cdots a_{1} x_{0} s \equiv_{y} s$), and $l_{n+1} \equiv_{f_{f}} a_{n} \cdots a_{1} x_{0} s$ (the case $l_{n+1}>_{A} \cdots$ was considered in (2)), then let b_{n+1}^{\prime} be such that $l_{n+1}=a_{n} \cdots a_{1} x_{0} s b_{n+1}^{\prime}$.

Claim. $s b_{n+1}^{\prime} \equiv_{g} s$.
Proof.

$$
a_{n} \cdots a_{1} x_{0} s \equiv_{\varphi} s \Rightarrow\left(\exists u \in S^{1}\right) u a_{n} x_{0} s=s .
$$

Hence multiplying $\left(l_{n+1}=\right) a_{n} \cdots a_{1} x_{0} s b_{n+1}^{\prime} \equiv_{g} a_{n} \cdots a_{1} x_{0} s$ on the left by u we obtain $u a_{n} \cdots a_{1} x_{0} s b_{n+1}^{\prime} \equiv_{\#} u a_{n} \cdots a_{1} x_{0} s$, which is equivalent to $s b_{n+1}^{\prime} \equiv_{\neq f} s$. This proves the claim.

Now

$$
\begin{aligned}
& q \cdot(s)(\bar{s})(s)=(q s) \text { norm } \operatorname{code} \cdot(\bar{s})(s)= \\
& \left.=\left[\begin{array}{c}
\vdots \\
\cdots \\
\\
\\
l_{n+1} \\
a_{n} \cdots a_{1} x_{0} s b_{n+1}^{\prime} \\
\sum_{s n}
\end{array}\right] a_{n} \cdots a_{1} x_{0} s\right] \operatorname{code} \cdot(\bar{s})(s)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\vdots & \ldots \\
& \left(>_{y}\right) \\
s b_{n+1}^{\prime}
\end{array}\right] \cdot(s) \quad \text { (by definition of }(\bar{s}) \text {), }
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
\vdots & \ldots \\
& \geq_{2} \\
a_{n} \cdots a_{1} x_{0} s b_{n+1}^{\prime}\left(=l_{n+1}\right) & \bigodot_{q} a_{n} \cdots a_{1} x_{0} s
\end{array}\right] \text { code, }
$$

which is equal to $q \cdot(s)$ in this case.
Here we assumed that q has its center in S; the case where the center of q is in S is treated identically.
This proves that the axiom $s=s \$ s$ is satisfied.
The axiom $\bar{s}=\bar{s} s \bar{s}$ is verified in a similar manner.
Axiom (1). We have to show: $(\forall q \in Q) q \cdot\left(s_{1}\right)\left(s_{2}\right)=q \cdot\left(s_{1} s_{2}\right)$.
It is easy to see that if $q\left(s_{1}\right)\left(s_{2}\right) \neq 0$ and $q\left(s_{1} s_{2}\right) \neq 0$, then $q \cdot\left(s_{1}\right)\left(s_{2}\right)=q \cdot\left(s_{1} s_{2}\right)$. We st have to show: $\boldsymbol{q} \cdot\left(s_{1}\right)\left(s_{2}\right) \neq 0$ iff $q \cdot\left(s_{1} s_{2}\right) \neq 0$.
Claim. $q \cdot\left(s_{i}\right)\left(s_{2}\right) \neq 0 \Rightarrow q \cdot\left(s_{1} s_{2}\right) \neq 0$.
If $\boldsymbol{q} \cdot\left(s_{1}\right)\left(s_{2}\right) \neq 0$, then $\boldsymbol{q} \cdot\left(s_{1}\right) \neq 0$, hence by (A2.a.3), there exists \boldsymbol{h} such that for all j with $0 \leq j<h$:

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{1} x_{0} s_{i} \leq_{i} a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1}, \\
a_{h} \cdots a_{1} x_{0} s_{1}>_{3} a_{h} \cdots a_{1} x_{0} b_{1} \cdots b_{h} b_{h+1} .
\end{array}\right.
$$

Remark. Here we assume that q has its center in S, and that $h, k<n$. The other cases are similar.
And, since $\left(q \cdot\left(s_{1}\right)\right)\left(s_{2}\right) \neq 0$, there exists $k(\geq h)$ such that for all j with $h \leq j<k$:

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{h} \cdots a_{1} x_{0} s_{1} s_{2} \leq_{g} a_{j} \cdots a_{h} \cdots a_{1} x_{0} b_{1} \cdots b_{h} \cdots b_{j} b_{j+1} \\
a_{k} \cdots a_{h} \cdots a_{1} x_{0} s_{1} s_{2}>_{k} a_{k} \cdots a_{h} \cdots a_{1} x_{0} b_{1} \cdots b_{h} \cdots b_{k} b_{k+1} .
\end{array}\right.
$$

(Here we use Lemma (A2.a.9).) But, since $a_{j} \cdots a_{1} x_{0} s_{1} s_{2} \leq_{g} a_{j} \cdots a_{1} x_{0} s_{1}$, the first conditions (for $\boldsymbol{q} \cdot\left(s_{1}\right) \neq 0$) imply that for all j with $0 \leq j<h$:

$$
a_{j} \cdots a_{1} x_{0} s_{1} s_{2} \leq{ }_{\xi} a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1} ;
$$

therefore $q \cdot\left(s_{1} s_{2}\right) \neq 0$ (and these expressions also show that $\left.q \cdot\left(s_{1} s_{2}\right)=q \cdot\left(s_{1}\right)\left(s_{2}\right)\right)$.
Claim. $\boldsymbol{q} \cdot\left(s_{1} s_{2}\right) \neq 0 \Rightarrow q \cdot\left(s_{1}\right)\left(s_{2}\right) \neq 0$. If $\boldsymbol{q} \cdot\left(s_{1} s_{2}\right) \neq 0$, then (by (A2.a.3)): there exists k such that for all j with $0 \leq j<k$:

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{1} x_{0} s_{1} s_{2} \leq{ }_{g} a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1} \\
a_{k} \cdots a_{1} x_{0} s_{1} s_{2}>{ }_{k} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1} .
\end{array}\right.
$$

This implies that $\left(q \cdot\left(s_{1}\right)\right)\left(s_{2}\right) \neq 0$, provided that $q \cdot\left(s_{1}\right) \neq 0$.
To show that $q \cdot\left(s_{1}\right) \neq 0$ we need the existence of a number $h(\leq h)$ such that for all j with $0 \leq j<h$:

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{1} x_{0} s_{1} \leq_{h} a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1} \\
a_{h} \cdots a_{1} x_{0} s_{1}>_{h} a_{h} \cdots a_{1} x_{0} b_{1} \cdots b_{h} b_{h+1}
\end{array}\right.
$$

However, since ($\forall j, 0 \leq j<k$):

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{1} x_{0} s_{1} s_{2} \leq_{g} a_{j} \cdots a_{1} x_{0} s_{1} \\
a_{j} \cdots a_{1} x_{0} s_{1} s_{2} \leq_{k} a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1}
\end{array}\right.
$$

we have, by unambiguity of the R-order of S :

$$
(\forall j, 0 \leq j<k): \quad a_{j} \cdots a_{1} x_{0} s_{1} \geq_{n} \text { or }<a_{j} \cdots a_{1} x_{0} h_{1} \cdots b_{j} b_{j+1}
$$

Hence, there exists

$$
h=\min \left\{j \mid 0 \leq j<k \text { and } a_{j} \cdots a_{1} x_{0} s_{1}>a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1}\right\}
$$

Now $q \cdot\left(s_{1}\right) \neq 0$, since for this choice of h we have $(\forall j, 0 j<h)$:

$$
\left\{\begin{array}{l}
a_{j} \cdots a_{1} x_{0} s_{1} \leq a_{j} \cdots a_{1} x_{0} b_{1} \cdots b_{j} b_{j+1} \\
a_{h} \cdots a_{1} x_{0} s_{1}>{ }_{h} a_{h} \cdots a_{1} x_{0} b_{1} \cdots b_{h} b_{h+1}
\end{array}\right.
$$

Axiom (2). That $q \cdot\left(\bar{s}_{1}\right)\left(\bar{s}_{2}\right)=q \cdot\left(s_{2} s_{1}\right)$ is proved in a similar way; here we need the assumption that the L-order of S is unambiguous.

Axiom (6L). We shall show $\left(s_{1}\right)\left(\bar{s}_{2}\right) \neq 0$ iff $s_{1} \geqslant s_{2}$.
$\left(\Rightarrow\right.$) Suppose for some $q \in Q$, we have $q \cdot\left(s_{1}\right)\left(\bar{s}_{2}\right) \neq 0$. Then $q \cdot\left(s_{1}\right)$ is of the form

$$
\left[\begin{array}{cc}
& a_{k} \cdots a_{1} x_{0} s_{1} \\
& \bigotimes_{0} \\
\vdots & \cdots \\
\vdots & \left.<_{4}\right) \\
& a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1}
\end{array}\right] \text { code }
$$

and $q \cdot\left(s_{1}\right)\left(\tilde{s}_{2}\right)$ has one of the following two forms (using Lemma (A2.a.9)): Case 1:

$$
q \cdot\left(s_{1}\right)\left(\bar{s}_{2}\right)=\left[\begin{array}{ccc}
& & \\
& & \left.a_{k} \cdots a_{1} x_{0} s_{1} \ll_{2}\right) s_{2} \\
\vdots & & \cdots\left(<_{4}\right) a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} \\
& \ldots & \vdots
\end{array}\right] \text { code }, \begin{aligned}
& \text { if } a_{k} \cdots a_{1} x_{0} s_{1}<, s_{2}
\end{aligned}
$$

Case 2:
$q \cdot\left(s_{1}\right)\left(\bar{s}_{2}\right)=\left[\begin{array}{c}a_{k+p} \cdots a_{k+1}\left(a_{k} \cdots a_{1} x_{0} s_{1}\right) b_{k+1}^{\prime} b_{k+2} \cdots b_{k+p} \\ =a_{k+p} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} b_{k+2} \cdots b_{k+p}<s_{2} b_{k+1}^{\prime} b_{k+2} \cdots b_{k+\rho} \\ \cdots\end{array}\right]$ code
(where b_{k+1}^{\prime} is such that $a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k} b_{k+1}=a_{k} \cdots a_{1} x_{0} s_{1} b_{k+1}^{\prime}<a_{k} \cdots a_{1} x_{0} s_{1}$), if

$$
\begin{gathered}
s_{2} \leq_{y} a_{k} \cdots a_{1} x_{0} s_{1}, \quad s_{2} b_{k+1}^{\prime} \leq_{y} a_{k+1}\left(a_{k} \cdots a_{1} x_{0} s_{1}\right) b_{k+1}^{\prime}, \cdots \\
\cdots, s_{2} b_{k+1}^{\prime} b_{k+2} \cdots b_{k+p-1} \leq \leq_{y} a_{k+p-1} \cdots a_{k+1}\left(a_{k} \cdots a_{1} x_{0} s_{1}\right) b_{k+1}^{\prime} b_{k+2} \cdots b_{k+p-1}
\end{gathered}
$$

and

$$
\begin{aligned}
& s_{2} b_{k+1}^{\prime} b_{k+2} \cdots b_{k+p}>{ }_{2} a_{k+p} \cdots a_{k+1}\left(a_{k} \cdots a_{1} x_{0} s_{1}\right) b_{k+1}^{\prime} b_{k+2} \cdots b_{k+p} \\
&\left(=a_{k+p} \cdots a_{k+1} a_{k} \cdots a_{1} x_{0} b_{1} \cdots b_{k+1} b_{k+2} \cdots b_{k+p}\right) .
\end{aligned}
$$

Remark. Here we assume q has its center in S, and that $k<n, k+p<n$.
The other cases are similar.
In Case 1 we have $a_{k} \cdots a_{1} x_{0} s_{1}<_{y} s_{2}$, and of course $a_{k} \cdots a_{1} x_{0} s_{1} \leqslant_{y} s_{1}$. Hence, by unambiguity of the L-order of $S: s_{1} \xi_{y} S_{2}$.

In Case 2 we have (see above) $s_{2} \leq_{y} a_{k} \cdots a_{1} x_{0} s_{1}$, and of course $a_{k} \cdots a_{1} x_{0} s_{1} \leq s_{y} s_{1}$; hence $s_{2} \leq, s_{1}$.

So we proved that $(\exists q \in Q) q \cdot\left(s_{1}\right)\left(\tilde{s}_{2}\right) \neq 0 \Rightarrow s_{1} \xi_{y} s_{2}$.
(\Leftrightarrow) From the definitions

$$
I \cdot\left(s_{1}\right)\left(\bar{s}_{2}\right)=s_{1} \cdot\left(\bar{s}_{2}\right)= \begin{cases}\left(s_{1}\left(\leq_{4}\right) s_{2}\right) \text { code } & \text { if } s_{1} \leq_{y} s_{2}, \\
\left(\begin{array}{c}
s_{1} \\
\left(s_{4}\right) \\
s_{2}
\end{array}\right) \text { code } & \text { if } s_{1}>_{y} s_{2}, \\
0 & \text { if } s_{1} \not z_{4} s_{2} .\end{cases}
$$

Thus $\left(s_{1}\right)\left(\bar{s}_{2}\right) \neq 0$ if $s_{1} z_{f}, s_{2}$.
The verification of Axiom (6R) is dual.
This proves that $\langle S \cup \bar{S} \cup\{0\}\rangle_{F(\mathrm{Q})}$ satisfies all the axioms, and thus is a homomorphic image of $(S)_{\text {reg }}$ (following the reasoning given at the beginning of A2); this also implies that ($S)_{\text {reg }}$ acts on Q.

We shall show next that elements of $(S)_{\text {reg }}$ which are represented by different coded normal forms act differently on Q; this implies that different coded normal forms represent different elements of ($S)_{\text {reg }}$ and that the action of ($\left.S\right)_{\text {reg }}$ on Q is faithful (hence ($Q,(S)_{\text {reg }}$) is a transformation semigroup).

(c) Uniqueness

Uniqueness follows from the following fact. Let $r_{m} l_{m} \cdots \cdots l_{1} r_{1} l_{0}$ be a coded normal form (with center in S or in S). Then

$$
I \cdot\left(r_{m}\right)\left(I_{m}\right) \cdots \cdots\left(l_{1}\right)\left(\bar{r}_{1}\right)\left(l_{0}\right)=r_{m} I_{m} \cdots \cdots l_{1} r_{1} l_{0}
$$

(This can be proved easily from the definitions of norm and code.)
Also $I \cdot(0)=0$. This completes the proof.

Acknowledgement

I thank Prof. John Rhodes for his encouragement and for the stimulating discussions I had with him while I was working on this problem (which is part of my Ph.D. thesis).

References

[1] J.C. Bi get, Iteration of expansions - Unambiguous semigroups, J. Pure Appl. Algebra, in this issue.
[2] J.C. Birget and J. Rhodes, Almost finite expansions of arbitrary semigroups, J. Pure Appl. Algebra 32 (1984) 239-287.
[3] J.C. Birget, The synthesis theorem for regular semigroups and its generalization to arbitrary semigroups (in preparation).
[4] S. Lazarus and J. Rhodes, Infinite holonomy decomposition (in preparation).
[5] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Vols. 1, 2, Mathematical Surveys 7 (Amer. Math. Soc., Providence, RI, 1961, 1967).
[6] J.M. Howie, An Introduction to Semigroup Theory (Academic Press, New York, 1976).
[7] G. Lallement, Semigroups and Combinatorial Applications (Wiley, New York, 1979).
[8] J. Rhodes, Infinite iteration of matrix semigroups, Parts I \& II, submitted to J. Algebra.
[9] J. Rhodes and D. Allen, Synthesis of classical and modern semigroup theory, Advances in Math. 11 (1976) 238-266.

[^0]: * This research was supported in part by US Air Force Grant AFOSR81-0238 and US Army Grant DAAG29-81-K-0136 through the Center for Mathematical System Theory, University of Florida, Gainesville, FL 32611, USA.
 ** Current address: Center for Mathematical System Theory, !arsen Hell 226, University of Florida, Gainesville, FL 32611, USA.

